Logistic regression
Machine Learning (CSCI 5770G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

1 OntarioTech

UNIVERSITY



Logistic regression

» Logistic regression is for binary classification
» The target variable y takes on values in {0,1}

8
.
o es .
. .
.
3 .
S
. .
. ‘.. L)
% e *
LR
4 . -
. P . LY
.
.
2 @ 1 L X J
N |—“
. o B
o o
o %@ ol Tao% 0
o 0% go %0 o
wo® 9
B
oo o
© ° a
-2 ° o
-4




Binary classification

The goal of binary classification is to learn hy(x), which can be used
to assign a label y € {0,1} to the input x. Label y takes values in
{0, 1}, so we can use Bernoulli distribution to specify its probability
distribution. Specifically

Pr(y =1) = ho(x)
Pr(y =0) =1 — hy(x)



Binary classification

The goal of binary classification is to learn hy(x), which can be used
to assign a label y € {0,1} to the input x. Label y takes values in
{0, 1}, so we can use Bernoulli distribution to specify its probability
distribution. Specifically

Pr(y =1) = ho(x)
Pr(y =0) =1 — hy(x)

Or more succinctly

Pr(y) = ho(x)” (1 — ho(x))" ™



Bernoulli distribution

A Bernoulli random variable X takes values in {0, 1}

0 it X =1

1 —60 otherwise

Pr(X16) = {

— HX(]. . 9)1—X



Bernoulli distribution

A Bernoulli random variable X takes values in {0, 1}

0 it X =1

1 —60 otherwise

Pr(X|0) = {

=0X(1-0)"¥

Example usage
Bernoulli distribution Ber(X|#) can be used to model coin tosses.



Likelihood for binary classification

Under the assumption that data is independant and identically
distributed (i.e., i.i.d.) the likelihood for the entire data is

N .
Pr(y|X,0) = [T ho(x)*" (1= hy(xD))

i=1

1—y (@)



Likelihood for binary classification

Under the assumption that data is independant and identically
distributed (i.e., i.i.d.) the likelihood for the entire data is

N .
Pr(y|X,0) = [T ho(x)*" (1= hy(xD))

i=1

1—y (@)

What form should hy(.) take?



Entropy

> Average level of information in a random variable.
» Given a discrete random variable X, which takes values in the
alphabet X and is distributed according to p: X — [0, 1]:

= p(x)logp(z) = By [~ log p(z)]
zeX

» Choice of base for log varies with applications
» Base 2 gives the unit of bits or shannons
» Base e gives units of nats

» Base 10 gives units of dits, bans, or hartley
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Figure from https://en.wikipedia.org/wiki/Entropy



Cross entropy

» Cross-entropy beween two distributions p and ¢ is a measure of
the average number of bits needed to identify an event from a
set X with true distribution p when the coding scheme used for
the set is optimized for an estimated probability distribution ¢

H(p,q) = — > p(x)logq(x) = —E, ) [log ¢(z)]
rEX

=-0.2*log 0.5 -0.81l0og 0.5
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= - 0.2 * log 0.5  - 0.8 log 0.5


Lets consider a simple 1D case for binary classification
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Sigmoid function

sigm(x) refers to a sigmoid function, also known as the logistic or
logit function.
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Logistic regression

For logistic regression, we set hg(x) = sigm(x” ). So

"o . 1y @
(yX,0) H [ x0T 9] [1 N 1 _|_ex(i)T9]

where

M
x1'0 =0, + Z 0;x;

i=1



Sigmoid function

1

Y 1 -y
1+ e—(0o+017) [

Prlylz,0) = [ R )

» 6 = (6p,0;) are model parameters.

» 6, controls the shift.

» 0, controls the scale (how steep is the slope of the sigmoid
function).




MLE for logistic regression (1)

Likelihood
L(0) = Pr(y[X, 0)

Negative log-likelihood

1(0) = — log L(6)

N
== yDloghg(xD) + (1 = y) log(1 — hy(x?))
=1

We prefer to work in the log domain for mathematical convenience.
Plus there are numerical advantages of working in the log domain.



MLE for logistic regression (2)
Goal

Our goal is to find parameters § that maximize the likelihood (or
minimize the negative log-likelihood).

0" = argmin ((6)
0



Derivative of sigmoid

—sigm(z) = d_1
'8 S drl+te®
—(—1)6_1

(1+e®)
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— (1 — sigm(a)) sigm(x)
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Gradient of a sigmoid w.r.t. ¢

We know that

%Sigm(x) = (1 — sigm(x)) sigm(z)

It follows

d . Tp\ . T s T
@&gm(x 0) = (1 — sigm(x 9)) sigm(x* 0)x



MLE for logistic regression

Negative log likelihood contribution by sample ¢

19(0) = — 4D log hy(x™)
— (1= y9)log(1 — he(x1))



MLE for logistic regression
Negative log likelihood contribution by sample ¢
19(0) = -y log hy (x*)
— (1= y9)log(1 — he(x1))
=—yDlog sigm(x(i)Tﬁ)
— (1 -y ) log(1 — sigm(x)" 9))

Gradient of 1()(6):
Vol =7
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MLE for logistic regression
Negative log likelihood contribution by sample ¢
19(0) = -y log hy (x*)
— (1 =y log(1 = hy(x"))
=—yDlog sigm(x(i)Tﬁ)
— (1 -y ) log(1 — sigm(x)" 0))

Gradient of 1()(6):
Vol =7



MLE for logistic regression

Notation change

» Replacing sigm(x(i)T) with s
» Replacing ¥ with y
» Replacing x() with x

Vol =Vj [—ylogs — (1 —y) log(1 — s)]



MLE for logistic regression

Notation change
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S 1—s



MLE for logistic regression

Notation change
» Replacing sigm(x(i)T) with s
» Replacing ¥ with y
» Replacing x() with x

Vol =V [—ylogs — (1 —y)log(1 — s)]
:_ys(l—s)x _a _y)s(l—s)x

S 1-s
= —YX + YSX — SX — YSX



MLE for logistic regression

Notation change
» Replacing sigm(x(i)T) with s
» Replacing ¥ with y
» Replacing x() with x

Vol =Vj [—ylogs — (1 —y) log(1 — s)]
s(1—s)x s(1 —s)x
=—y———— - 1-y)——
Y S ( y) 1—s

= — YX + YsX — sX — YsX

= —yx —sX



MLE for logistic regression

Notation change
» Replacing sigm(x(i)T) with s
» Replacing ¥ with y
» Replacing x() with x

Vol =V [—ylogs — (1 — y)log(1 — s)]
:_ys(lgs)x _a _y)s(i:ez)x
= — YX + YSX — SX — YSX
= —yx — SX
=—x(y—s)

Therefore (after fixing the notation),

Vol = —xO (50 — py(xD))



MLE for logistic regression

Gradient of [(0) for ith example

Vol = —xO (5@ — py(x))

Stochastic gradient descent rule

o0+ = 9k) — 71 (9)



MLE for logistic regression

Gradient of [(0) for ith example

Vol = —xO (5@ — py(x))

Stochastic gradient descent rule

o0+ = 9k) — 71 (9)
= 0% x50 — hy(xD))



MLE for logistic regression

Gradient of [(0) for ith example

Vol = —xO (5@ — py(x))

Stochastic gradient descent rule
p(k+1) — g(k) _ nVl(i)(H)
= 0% x50 — hy(xD))
= 0® 4 px@ (5 — sigm(x?"0)),

where 7 is the learning rate and k refers the the gradient descent
iteration (step).



Logistic regression for binary classification

Given a point x*), classify using the following rule

1 if Pr(y|x™*),0) > 0.5
v 0 otherwise

The decision .
boundary is

x7 = 0. |-
Recall that this is .

where the sigmoid
function is 0.5.




Logistic regression for binary classification

» The decision boundary is x70 = 0
» This is where sigm function is 0.5




Network view of logisitc regression

» By changing the activation function to sigmoid and using the
cross-entropy loss instead the least-squares loss that we use for
linear regression, we are able to perform binary classification.

1+ex"?




Network view of logisitc regression

» By changing the activation function to sigmoid and using the
cross-entropy loss instead the least-squares loss that we use for
linear regression, we are able to perform binary classification.
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M
xT0=00+) z:0;

i=1

Artificial neuron



Summary

> We looked at logisitc regression, a binary classifier.
» Bernoulli distribution



Summary

> We looked at logisitc regression, a binary classifier.

» Bernoulli distribution

P Linear regression and logistic regression topics provide an
excellent opportunity to study and understand the concepts
underpinning neural networks
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