
1 / 48

Linear regression
Machine Learning (CSCI 5770G)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

2 / 48

Regression

3 / 48

Regression
Consider data points (x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N)). Our
goal is to learn a function f(x) that returns (predict) the value y
given an x.

0 5 10 15 20

x

0

2

4

6

8

10

12

y

Data points

4 / 48

Regression
Given data D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(N), y(N))}, learn
function y = f(x).

I x is the input feature. In the example above, x is 1-dimensional,
however, in practice x is often an M -dimensional vector.

I y is the target output. We assume that y is continuous. y is
1-dimensional (why?)

5 / 48

Linear regression
We assume that a linear model of the form y = f(x) = θ0 + θ1x
best describe our data.

0 5 10 15 20

x

0

2

4

6

8

10

12

y
Data points

How do we determine the degree of “fit” of our model?

6 / 48

Least squares error
Loss-cost-objective function measures the degree of fit of a model to
a given data.
A simple loss function is to sum the squared differences between the
actual values y(i) and the predicted values f(x(i)). This is called
the least squares error.

C(θ0, θ1) =
N∑
i=1

(
y(i) − f(x(i))

)2

Our task is to find values for θ0 and θ1 (model parameters) to
minimize the cost.
We often refer to the predicted value as ŷ. Specifically,
ŷ(i) = f(x(i)).

7 / 48

Least squares error

C(θ0, θ1) =
N∑
i=1

(
y(i) − f(x(i))

)2

0 5 10 15 20

x

0

2

4

6

8

10

12

y

Data points

8 / 48

Model fitting

(θ0, θ1) = arg min
(θ0,θ1)

C(θ0, θ1)

= arg min
(θ0,θ1)

N∑
i=1

(
y(i) − f(x(i))

)2

= arg min
(θ0,θ1)

N∑
i=1

(
y(i) − (θ0 + θ1x

(i))
)

2

I C is convex.
I We can solve for θ0 and θ1

by setting ∂C
∂θ0

= 0 and
∂C
∂θ1

= 0.
x

100
50

0
50

100

y

100

50

0
50

100

0

5000

10000

15000

20000

z= x2 + y2

9 / 48

Solving for θ1 and θ0

From calculus

∂C

∂θ1
= −

N∑
i=1

2x(i)
(
y(i) − θ0 − θ1x

(i)
)

∂C

∂θ0
= −

N∑
i=1

2
(
y(i) − θ0 − θ1x

(i)
)

Setting these to 0, we get

N∑
i=1

2x(i)
(
y(i) − θ0 − θ1x

(i)
)

= 0 (1)

N∑
i=1

2
(
y(i) − θ0 − θ1x

(i)
)

= 0 (2)

10 / 48

Solving for θ1 and θ0

Let

〈y〉 = 1
N

N∑
i=1

y(i)

〈x〉 = 1
N

N∑
i=1

x(i)

Re-writing Eq. 2

2
N∑
i=1

y(i) − 2Nθ0 − 2θ1

N∑
i=1

x(i) = 0

⇒θ0 = 〈y〉 − θ1〈x〉

11 / 48

Solving for θ1 and θ0

Re-writing Eq. 1

N∑
i=1

x(i)y(i) − θ0

N∑
i=1

x(i) − θ1

N∑
i=1

x(i)2 = 0

⇒ 1
N

N∑
i=1

x(i)y(i) − θ0
N

N∑
i=1

x(i) − θ1
N

N∑
i=1

x(i)2 = 0

yields
〈xy〉 − θ1〈x2〉 = θ0〈x〉

where

〈xy〉 = 1
N

N∑
i=1

x(i)y(i)

〈x2〉 = 1
N

N∑
i=1

x(i)2
.

12 / 48

Solving for θ1 and θ0

Substitute the value of θ0

〈xy〉 − θ1〈x2〉 = 〈x〉〈y〉 − θ1〈x〉2

⇒θ1
(
〈x〉2 − 〈x2〉

)
= 〈x〉〈y〉 − 〈xy〉

⇒θ1 = 〈x〉〈y〉 − 〈xy〉
〈x〉2 − 〈x2〉

Use this value of θ1 to solve for θ0.

13 / 48

Solving for θ1 and θ0

θ0 = 〈y〉 − θ1〈x〉

θ1 = 〈x〉〈y〉 − 〈xy〉
〈x〉2 − 〈x2〉

0 5 10 15 20

x

0

2

4

6

8

10

12

y

Θ: (1.811322, 0.524238)

Estimated y vs. x

14 / 48

Linear least squares in higher dimensions

Input features
Assume x(i)

0 = 1 (bias)

x(i) =


1
x

(i)
1...
x

(i)
M



Targets

y(i)

Model

f(x) = xT θ

where model parameters are

θ =


θ0
θ1
...
θM



15 / 48

Linear least squares in higher dimensions

Design matrix

X =


− xT1 −
− xT2 −

...
− xTN −

 ∈ RN×(M+1)

Targets vector

y =


y1
y2
...
yN

 ∈ RN×1

Loss

C(θ) = (y−Xθ)T (y−Xθ)

16 / 48

Model fitting (solving for θ)
As before solve θ by setting ∂C

∂θ = 0

C(θ) = (y−Xθ)T (y−Xθ)

=
(
yT − (Xθ)T

)
(y−Xθ)

= yTy− yTXθ − (Xθ)T y + (Xθ)T Xθ
= yTy− 2 (Xθ)T y + (Xθ)T Xθ

We know that
∂C

∂θ
= −2XTy + 2XTXθ

Setting ∂C
∂θ

= 0, we get solution

θ̂ = (XTX)−1XTy

17 / 48

Linear least squares in 2D
Plane fitting

x1

10.0 7.5
5.0

2.5
0.0

2.5
5.0

7.5
10.0

x2

10.0
7.5

5.0
2.5

0.0
2.5

5.0
7.5

10.0

40

20

0

20

40

18 / 48

Beyond lines and planes
I Sometimes we need more complex models

1 0 1 2 3 4 5 6 7 8
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

I How do we construct more complex models?
I Suitable complexity
I Tractable
I Expressive
I Compute efficient

19 / 48

Beyond lines and planes
There are many ways to make linear models more powerful while
retaining their nice mathematical properties

I Use non-linear, non-adaptive basis functions to construct
generalized linear models that learn non-linear mappings from
inputs to outputs

I Use kernel methods that expands raw data using a large
number of non-linear, non-adaptive basis functions

I These models are still linear in their parameters
I Only linear part of the model learns

20 / 48

Polynomial fitting
I Construct more complicated linear models by defining input

features that are some combination of the components of x

Degree 3 polynomial
Set input feature as:

x(i) =
(
1, x(i), x(i)2

, x(i)3)
Then we can write the model as

f(x(i)) =
[
1 x(i) x(i)2

x(i)3
] 
θ0
θ1
θ2
θ3



21 / 48

Polynomial fitting

1 0 1 2 3 4 5 6 7 8
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y
data
model

I The model is still linear in θ
I We can still use the same least squares loss and the same

technique that we used for fitting a line

22 / 48

Basis functions
The idea explored in the previous slide can be extended further. It is
possible to introduce non-linearity in the system by using basis
functions φ(.) as follows:

f(x(i)) = φ(x(i))T θ

I φ(.) is a vector-valued function
I These models are sometimes referred to as linear basis function

models

23 / 48

Basis functions
Example basis functions:

I Polynomials
I Gaussians
I Sigmoids

24 / 48

Example: polynomial basis functions linear models
Using basis functions to setup a cubic polynomial in 1D

I φ0(x) = 1
I φ1(x) = x
I φ2(x) = x2

I φ3(x) = x3

Then we can write the model as follows:

f(x) =
[
φ0(x) φ1(x) φ2(x) φ3(x)

] 
θ0
θ1
θ2
θ3



25 / 48

Example: Gaussian basis functions in linear models
Gaussian basis function is

φi(x) = exp
(
−γi‖µi − x‖22

)
We can use it to setup Φ

Φ =


φ0(x(1)) φ1(x(1)) · · · φM (x(1))
φ0(x(2)) φ1(x(2)) · · · φM (x(2))

...
φ0(x(N)) φ1(x(N)) · · · φM (x(1))


where

φ0(.) = 1

26 / 48

Basis functions
Using the basis functions, the loss can be written as

C(θ) =
(
Y− ΦT θ

)T (
Y− ΦT θ

)
And the solution is

θ̂ = (ΦTΦ)−1ΦTY

1 0 1 2 3 4 5 6 7 8
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Linear regression using 4 Gaussian basis functions
data
model

27 / 48

Linear models and basis functions
I Linear models are fundamentally limited in terms of the kind of

problems they can solve.
I These cannot be used to solve all of our AI problems

I Neural networks, which are non-linear, also use basis functions;
however, there is an important difference
I Neural networks can also learn the "parameters" of the basis

functions themselves.
I Linear regression only learns the parameters θ, i.e., the basis

functions themselves are fixed.

28 / 48

Regularization
I Increasing input features can increase model complexity

I We need an automatic way to select appropriate model
complexity

I Regularization is the standard technique that is used to achieve
this goal
I Eg., use the following loss function that penalize squared

parameters:

C(θ) = (y−Xθ)T (y−Xθ) + δ2θT θ

I This is referred to as ridge regression in statistics.

29 / 48

Regularization
Solving for θ using

C(θ) = (y−Xθ)T (y−Xθ) + δ2θT θ

yields
θ̂ = (XTX + δ2Id)−1XTY

So far, we have seen solutions having the following form:

θ̂ = (XTX)−1XTY

Inverting XTX can lead to problems, if the system of equations is
ill conditioned. A solution is to add a small element to the diagonal
of XTX. Note that the above estimate (that we achieved using
ridge regression is doing exactly that).

30 / 48

Regularization and basis function
When using basis functions, we define the loss function (for ridge
regression) as follows

C(θ) = (y− Φθ)T (y− Φθ) + δ2θT θ

And the solution is

θ̂ = (ΦTΦ + δ2Id)−1ΦTY

31 / 48

Other forms of regularizers

C(θ) = (y−Xθ)T (y−Xθ) + δ2‖θ‖qq

32 / 48

Data whitening
If different components (dimensions) of the training data has
different units (say one is measured in meters, while the other is
measured in kilograms), then the squared penalty terms (that
appear in our cost function) have very different weights, which can
lead to erroneous solutions.
One scheme to avoid this is to “whiten the data”. Input components
have:

I unit variance; and
I no covariance

XT
whitened =

(
XTX

)− 1
2 XT

But what if two components are perfectly correlated?

33 / 48

Regression
I What model should we choose?
I What may be the best way to parameterize this model?
I How do we decide if our model “fits” the data well?
I What confidence we have that our model also fits the unseen

data, i.e., generalization.
I This is important for prediction.

34 / 48

Fit error
I In general it is not possible (nor desirable, and more on this

later) for a model to fit the data exactly.
I A model may not fit the data due to following reasons:

I Imperfect data (noise present in the data)
I Mislabeling (target errors)
I Hidden attributes that may affect the target values, and which

are not available to us during model fitting
I Model may be too “simple”

35 / 48

How do we decide how well our model will fit the unseen
data?

I Divide available data (input data + target values) into training
and testing sets

I Only training set is available during the model fitting phase
I Evaluate the trained model (hypothesis) on the test set

36 / 48

Cross-Validation
1. Given training data (xtrain, ytrain) , pick a value for δ2,

compute estimate θ̂
2. Compute predictions for training set ŷtrain.
3. Compute predictions for test set ŷtest.

37 / 48

Cross-Validation
Case 1
δ2 selection via Min-Max is accounting for the worst-case scenario.
This is appropropriate if, say, you are designing a safety critical
system.

Case 2
δ2 selection via picking the best average case is useful in cases when
you want your system to work well on average, with the caveat that
in some cases the system might fail miserably.

38 / 48

K-fold cross-validation
I Split the training data into K folds
I For each fold k ∈ 1, · · · ,K

I Train the model on every fold except k
I Test the model on fold k
I Repeat in a round-robin fashion

Often K is set between 5 to 10

39 / 48

Leave-one-out Cross Validation (LOOCV)
I Set K equal to N , the number of data items.
I Train model on all data items except i.
I Use the left-out data item for test, and repeat in a round-robin

fashion

40 / 48

Bias vs. Variance
I High bias leads to underfitting

I The model has failed to capture the relevant features in the
data. Perhaps the model is too simple!?

I High variance leads to overfitting
I The model has latched on to the irrelevant features (say, noise)

in the data.
I Such models to not generalize well beyond the training data.

This is one of the reasons why we rely upon cross-validation to get a
sense of how our model will perform on previously unseen data.
This also suggests that unlike optimization where the sole purpose is
to minimize the error, in training sometimes we accept larger
training errors to achieve better generalization.

41 / 48

Network view of linear regression

42 / 48

Graphical representation of linear regression
Both figures model the following function.

f(x) =
∑
j

xjθj

The figure on the right also shows an identify a(x) = x activation function. Each connection denotes a
parameter/weight that is multiplied to the corresponding input value. Gray circles denote input, and black circles
denote sum operation

What does it remind us of?

43 / 48

Key Takeaway 1
I Model

I Parameters, and optionally hyper-parameters
I Mechanism to determine model fitness

I Loss
I Model fitting

I Searching model parameters that results in the “best” model
fitness or the “lowest” loss

I Even for simple problems, it is not always possible to fit the
model using an analytical solution

I For neural networks, we often use some variant of gradient
descent

I The ability to compute gradient of loss w.r.t. model paramters
(and inputs)

44 / 48

Key Takeaway 2
I It is possible to use basis functions to develop models capable

of dealing with non-linearities present in the data
I Neural networks can be seen as using basis functions as well;

however, there is a key difference, neural networks can also
learn the “parameters” of the basis functions themselves.
I Linear regression models discussed above only learns the

parameters θ, i.e., the basis functions themselves are fixed.

45 / 48

Key Takeaway 3
I Regularization is necessary to reduce generalization error

without effecting training error.
I Without regularization a complex model will most likely overfit

training data, leading to poor performance on test data.
I Extra constraints and penalties
I Prior knowledge

What about neural networks? How do we deal with model
complexity in neural networks?

46 / 48

Summary
I 1-D linear regression is a useful case-study that illustrates many

of issues that arise in regression in higher dimensions and in
more complex models

I Model selection
I Simple models are unable to capture all important variations in

the data
I Complex models overfit. Consequently, these do not generalize

well.
I The quality of fit

I Check whether or not the model generalizes, i.e., how does it
perform on the test data that was not available to it during the
training phase

47 / 48

Summary
I Minimizing loss (optimization)

I Gradient descent (to be discussed later)
I Batch update
I Online or stochastic updates

I Use analytical approaches when available
I More data can improve performance only if the model is of

sufficient complexity

48 / 48

Copyright and License
©Faisal Z. Qureshi

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

