## Exercise

Please hand in this paper to the instructor before the end of the lecture.

| Name:           |       |  |
|-----------------|-------|--|
| Student number: | Date: |  |

**Q.** You are given the following data:

|   | Features    |     |               | Labels    |
|---|-------------|-----|---------------|-----------|
| 1 | $x_1^{(1)}$ | ••• | $x_{d}^{(1)}$ | $y^{(1)}$ |
| 2 | $x_1^{(2)}$ | ••• | $x_{d}^{(2)}$ | $y^{(2)}$ |
| ÷ | ÷           |     | :             | •         |
| Ν | $x_1^{(N)}$ |     | $x_d^{(N)}$   | $y^{(N)}$ |

You are asked to fit a linear model to it. Complete the following tasks.

- 1. Express the model mathematically.
- 2. How many paramters this model will have?
- 3. Write down the MSE loss expression for your setup.

**Q.** Consider the following setup that shows a collection of data points. Here x-coordinate represents inputs and y-coordinates represents their respective output.



Since both x and y are continuous, we have a *regression* problem at our hand. We are asked to fit the following, single-parameter model to this data:

$$y = mx$$
,

where m is the lone model parameter.

Devise a scheme to fit this model to this data? Do you think this model has enough "model complexity" to fit this data well? Can you spot a problem? If there is a problem, can you suggest a fix.