In [1]:
import numpy as np
A quiz
In [9]:
t = np.array([11,2,1])
R = np.array([0, 0, 1, 0, 1, 0, -1, 0, 0]).reshape((3,3), order='F').T
print(R)
[[ 0 0 1] [ 0 1 0] [-1 0 0]]
Write down the x, y, and z axis of the world coordinate system
In [10]:
x_world = np.array([1,0,0])
y_world = np.array([0,1,0])
z_world = np.array([0,0,1])
Write down the x, y, and z axis of the camera coordinate system (expressed in world), assuming a right-handed coordinate system
In [12]:
R_inv = np.linalg.inv(R)
x_cam = np.dot(R_inv, x_world)
y_cam = np.dot(R_inv, y_world)
z_cam = np.dot(R_inv, z_world)
print(x_cam)
print(y_cam)
print(z_cam)
[0. 0. 1.] [0. 1. 0.] [-1. 0. 0.]
Express the point p_world
in the camera coordinate system
In [13]:
p_world = np.array([4,3,0])
p_cam = np.dot(R, (p_world - t))
print(p_cam)
[-1 1 7]
Assume that the camera principle axis is along the camera z-axis and the camera focal length is 3, express the point in image plane
In [21]:
f = 3
K = np.array([f,0,0,0,0,f,0,0,0,0,1,0]).reshape(3,4)
print(K)
p_cam_homogeneous = np.hstack([p_cam, np.array([1])])
print(p_cam_homogeneous)
p_image_homogeneous = np.dot(K, p_cam_homogeneous)
print(p_image_homogeneous)
p_image = p_image_homogeneous[:2]/p_image_homogeneous[2]
print(p_image)
[[3 0 0 0] [0 3 0 0] [0 0 1 0]] [-1 1 7 1] [-3 3 7] [-0.42857143 0.42857143]
In [ ]: