

Frequency Analysis

Faisal Qureshi faisal.qureshi@uoit.ca

Salvador Dali invented *Hybrid Images*

Why do we get two different distance dependent interpretations?

Why does lower resolution image still makes sense to us?

Jean Baptiste Joseph Fourier 1786 — 1830

- Any univariate function can be re-written as a sum of sines and cosines of different frequencies (1807)
 - No one believed him
 - Not translated into English until 1878
- It's true
 - Called Fourier Series

A sum of sines

- Add enough of them to get any signal you want
- Basic building block

 $A\sin(wx+\phi)$

Frequency Spectra

$$g(t) = \sin(2\pi ft) + \frac{1}{3}\sin(2\pi(3f)t)$$

frequency

Example: Music

• We think of music in terms of frequencies at different magnitudes

Fourier Analysis in Images

Intensity image Fourier image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Fourier Transform

- Fourier transform stores the magnitude and phase at each frequency
 - Magnitude encodes how much signal is at a particular frequency

$$A = \pm \sqrt{R(w)^2 + I(w)^2}$$

- Phase encodes spatial information (indirectly) $\phi = \arctan \frac{I(w)}{R(w)}$
- For mathematical convenience, these are often represented as real and complex numbers

Fourier Transform

• Fourier transform

$$\mathcal{F}\{f(x)\} = \hat{f}(w) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx}dx$$

• Inverse Fourier transform

$$f(x) = \mathcal{F}^{-1}\{\hat{f}(w)\} := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{iwx} dw$$

Discrete Fourier Transform

• A sequence of N complex numbers

 $x_0, x_1, x_2, \cdots, x_{N-1}$

can be transformed into an N-periodic sequence of complex numbers

$$X_k := \sum_{n=0}^{N-1} x_n e^{-2\pi i k n/N}$$

• Fast Fourier Transform (FFT) is $N \log N$

Convolution Theorem

- Fourier transform of the convolution of two functions is the product of their Fourier transforms $\mathcal{F}\{g*h\}=\mathcal{F}\{g\}\mathcal{F}\{h\}$
- The inverse Fourier transform of the product of two Fourier transform is the convolution of the two inverse Fourier transforms

$$\mathcal{F}^{-1}\{gh\} = \mathcal{F}^{-1}\{g\} * \mathcal{F}^{-1}\{h\}$$

Convolution in *spatial domain* is equivalent to multiplication in *frequency domain*

Properties of Fourier Transforms

• Linearity

$$\mathcal{F}\{ag(x) + bh(x)\} = a\mathcal{F}\{g(x)\} + b\mathcal{F}\{h(x)\}$$

- Fourier transform of a real signal is symmetric around origin
- The energy of the signal is the same as the energy of its Fourier transform

Filtering in Spatial Domain

Filtering in Frequency Domain

Why does Gaussian filter gives a smooth image, where as the square filter gives edgy artifacts?

Gaussian

Box Filter

Why does lower resolution image still makes sense to us?

Aliasing Problem

Aliasing Problem

- Sub-sampling can result in aliasing artifacts
 - Wagon wheels rolling the wrong way in movies
 - Checkerboards disintegrate in ray tracing
 - Striped shirts look funny

Sampling and Aliasing

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be twice the maximum frequency of the signal
- This will allow us to perfectly reconstruct the original signal from its samples

Anti-Aliasing

- Sample more often
- Get rid of all frequency that are greater than half the sampling frequency
 - We will loose information
 - But still better than aliasing artifacts
 256x256 128x128 64x64 32x32 16x16

Submsampling without Pre-Filtering

1/2

1/4 2x zgom

1/8 4x zoom

Subsampling with Gaussian Pre-Filtering

1/2

1/4 2x zoom

1/8 4x zoom

Why do we get two different distance dependent interpretations?

Summary

- Image filtering in frequency domain
 - Fourier analysis
- Image filtering in frequency domain is vs for auto correlation
- Images are smooth image compression
- Low-pass filter before smapling