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Salvador Dali
invented Hybrid Images
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Why do we get two different 
distance dependent interpretations?
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Why does lower resolution 
image still makes sense to us?
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Jean Baptiste Joseph Fourier 
1786 — 1830

• Any univariate function can be re-written as a sum 
of sines and cosines of different frequencies (1807) 
• No one believed him   
• Not translated into English until 1878 

• It’s true 

• Called Fourier Series
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A sum of sines
• Add enough of them to get 

any signal you want 

• Basic building block

A sin(wx+ �)

7



Frequency Spectra
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Example: Music
• We think of music in terms of frequencies at 

different magnitudes
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Fourier Analysis in Images

Intensity image

Fourier image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering 
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Fourier Transform
• Fourier transform stores the magnitude and phase 

at each frequency 
• Magnitude encodes how much signal is at a 

particular frequency  

• Phase encodes spatial information (indirectly) 
 

• For mathematical convenience, these are often 
represented as real and complex numbers

A = ±
p

R(w)2 + I(w)2

� = arctan
I(w)

R(w)
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• Fourier transform  
 
 

• Inverse Fourier transform

Fourier Transform

F{f(x)} = f̂(w) :=
1p
2⇡

Z 1

�1
f(x)e�iwxdx

f(x) = F�1{f̂(w)} :=
1p
2⇡

Z 1

�1
f̂(w)eiwxdw
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Discrete Fourier Transform
• A sequence of N complex numbers  
 
 
can be transformed into an N-periodic sequence of 
complex numbers  
 
 

• Fast Fourier Transform (FFT) is 

x0, x1, x2, · · · , xN�1

Xk :=
N�1X

n=0

xne
�2⇡ikn/N

N logN
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Convolution Theorem
• Fourier transform of the convolution of two 

functions is the product of their Fourier transforms  
 

• The inverse Fourier transform of the product of two 
Fourier transform is the convolution of the two 
inverse Fourier transforms

F{g ⇤ h} = F{g}F{h}

F�1{gh} = F�1{g} ⇤ F�1{h}

Convolution in spatial domain is equivalent to 
multiplication in frequency domain
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Properties of 
Fourier Transforms

• Linearity  
 

• Fourier transform of a real signal is symmetric 
around origin 

• The energy of the signal is the same as the energy 
of its Fourier transform

F{ag(x) + bh(x)} = aF{g(x)}+ bF{h(x)}
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Filtering in Spatial Domain

* = 
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Filtering in Frequency Domain
FFT

FFT

Inverse 
FFT
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Why does Gaussian filter gives a smooth 
image, where as the square filter gives 

edgy artifacts?

Gaussian Box filter
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Gaussian
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Box Filter
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Why does lower resolution 
image still makes sense to us?
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Aliasing Problem
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Aliasing Problem
• Sub-sampling can result in aliasing artifacts 

• Wagon wheels rolling the wrong way in movies 

• Checkerboards disintegrate in ray tracing 

• Striped shirts look funny
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Sampling and Aliasing
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Nyquist-Shannon Sampling 
Theorem

• When sampling a signal at discrete intervals, the 
sampling frequency must be twice the maximum 
frequency of the signal 

• This will allow us to perfectly reconstruct the 
original signal from its samples
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Anti-Aliasing
• Sample more often 

• Get rid of all frequency that are greater than half 
the sampling frequency 
• We will loose information 
• But still better than aliasing artifacts 
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Submsampling without  
Pre-Filtering

1/2 1/4 1/8
2x zoom 4x zoom29



Subsampling with Gaussian 
Pre-Filtering
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2x zoom 4x zoom30



Why do we get two different 
distance dependent interpretations?
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Summary
• Image filtering in frequency domain 

• Fourier analysis 

• Image filtering in frequency domain is vs for auto 
correlation 

• Images are smooth — image compression 

• Low-pass filter before smapling
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