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Salvador Dali
invented Hybrid Images







Why do we get two different
distance dependent interpretations?




Whny does lower resolution
image still makes sense to us”




Jean Baptiste Joseph Fourier
1786 — 1830

* Any univariate function can be re-written as a sum
of sines and cosines of different frequencies (1807)

e No one believed him

* Not translated into English until 1878
* |t's true

e Called Fourier Series



A sum of sines

------------------

* Add enough of them to get Y S WS
any signal you want ; :

e Basic building block

Asin(wx + ¢)

f(target)=

f] + f2+ f3...+ fn+...




Frequency Spectra

o(t) = sin(27 ft) + % in(27(31)1)
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Example: Music

* We think of music in terms of frequencies at
different magnitudes

Spectrum of a voice signal (15 seconds)

voice waveform example
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~ourier Analysis in Images

http://sharp.bu.edu/~slehar/fourier/fourier.ntml#filtering

Intensity image

Fourier Image
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Fourier Transtform

» Fourier transform stores the magnitude and phase
at each frequency

 Magnitude encodes how much signal is at a
particular frequency

— ::\/R(w)2 + I(w)2

 Phase encodes spatial infor(mf):ltion (indirectly)
I (w

R(w)

e For mathematical convenience, these are often
represented as real and complex numbers

¢ = arctan
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Fourier Transtform

e Fourier transform

Fif(a)) = fw)i= = [ fa)e i

 |nverse Fourier transform

f(2) = F{f(w)}) = %27 / " fw)e du
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Discrete Fourier Transform

* A sequence of N complex numbers

Loy L1y L2y yIN—-1

can be transformed into an N-periodic sequence of

complex numbers
N—1

Xk . E ZC 6—27Tikn/N
T T

n=0

* Fast Fourier Transform (FFT) is N log N
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Convolution Theorem

* Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Filg*hy = FlgyFihj

* The inverse Fourier transform of the product of two
Fourier transform is the convolution of the two
inverse Fourier transforms

F{ght =F g} = F{h}

Convolution in spatial domain is equivalent to
multiplication in frequency domain
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Properties of
Fourler Transforms

* Linearity
Flag(xz) +bh(z)} = aF{g(x)} + bF{h(z)}

* Fourier transform of a real signal is symmetric
around origin

* The energy of the signal is the same as the energy
of its Fourier transtorm
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Filtering In Spatial Domain
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Filtering In Frequency Domain

log fit magnitude

Inverse
FFET




Why does Gaussian filter gives a smooth
image, where as the square filter gives
edqgy artitacts”

(Gaussian - Box filter n
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intensity image
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filter: gaussian

filter: gaussian
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filtered image

log fit magnitude of filtered image




BOX Fllter

intensity image Open File filter- box filtered image

A’ Figure 4 Eur Figure 6
jew Insert Tools Desktop Window Help File Edit View Insert Tools D»esktop'window Help | [File Edit View Insert Tools Desktop Window Help
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filter: box log fit magnitude of filtered image

log fit magnitude of image
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Whny does lower resolution
image still makes sense to us”
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Allasing Problem

/\\/\\/%/\\/\\ﬁ\/

\/\




Allasing Problem

* Sub-sampling can result in aliasing artifacts
* Wagon wheels rolling the wrong way in movies
* Checkerboards disintegrate in ray tracing

* Striped shirts look funny
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Sampling and Aliasing

256x256 [28x128 04x64 32x32 [6x16
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Nyqguist-Shannon Sampling
Theorem

* When sampling a signal at discrete intervals, the
sampling frequency must be twice the maximum
frequency of the signal

* This will allow us to perfectly reconstruct the
original signal from its samples
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Anti-Aliasing
* Sample more often

* Getrid of all frequency that are greater than half
the sampling frequency

e \We will loose information

e But still better than aliasina artifacts
2906%x256 128%128 64 x64 32%32 16x16
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Submsampling without
Pre-Filtering




Subsampling with Gaussian
Pre-Filtering




Why do we get two different
distance dependent interpretations?




summary

Image filtering in frequency domain

* Fourier analysis

Image filtering in frequency domain is vs for auto
correlation

Images are smooth — iImage compression

Low-pass filter before smapling
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