

Neural networks

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

Feed forward neural networks

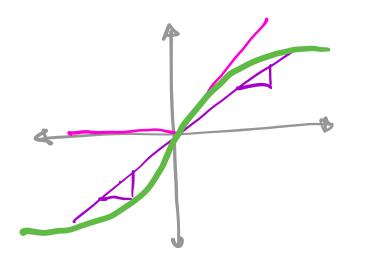
• Approximate some function $y = f^*(\mathbf{x})$ by learning parameters θ s.t. $\tilde{y} = f(\mathbf{x}; \theta)$

Feed forward neural networks can be seen as directed acyclic graphs

$$y = f(\mathbf{x}) = f^{(L)}(\cdots f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x}))))$$

Training examples specify the output of the ast layer

Network needs to figure out the inputs/outputs for the hidden layers



Extending linear models

How can we extend linear models?

- Specify a very general ϕ s.t. the model becomes $y = heta^T \phi(\mathbf{x})$

CLASSIFICATION

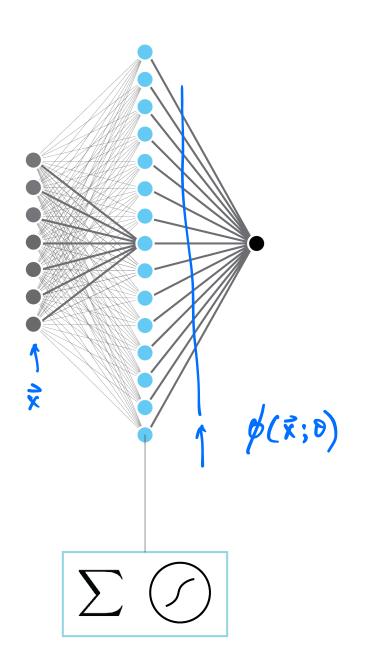
- Problem with generalization
- Difficult to encode *prior* information needed to solve Al-level tasks
- \blacktriangleright Engineer ϕ for the task at hand
 - Tedious
 - Difficult to transfer to new tasks
- Neural networks approaches
 - $y = f(\mathbf{x}; \theta, w) = \phi(\mathbf{x}; \theta)^T w$ i.e. use parameters θ to learn ϕ and use w to map $\phi(\mathbf{x})$ to the desired output y
 - The training problem is non-convex
 - \blacktriangleright Key advantage: a designer just need to specify the right family of functions and not the exact function ϕ

loss landscape is not guadrati.

Classical artificial neural networks

 Shallow and wide
One hidden layer can represent any function
Focus was on efficient ways to optimize

(train)

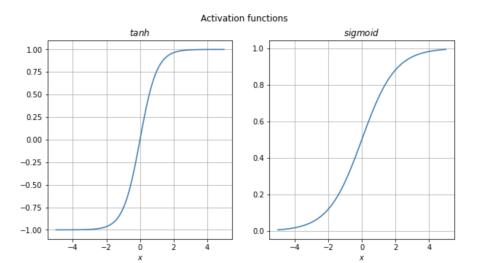


Activation functions (artificial neural networks)

- The activation functions for output:
 - Identity function for regression;
 - Sigmoid for binary classification; and
 - Softmax for multi-class classification.

The activation functions for hidden layers:

tanh (allows for negative output values); and
sigmoid.

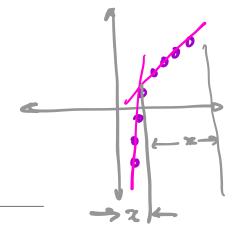


Example: a regression network

- ► **Input**: 1D, real numbers
- **Ouput**: 1D, real numbers
- ► Hidden layer size: 2
- Number of weights: 7
- ► Loss: MSE
- Probabilistic view of line fitting

x

1

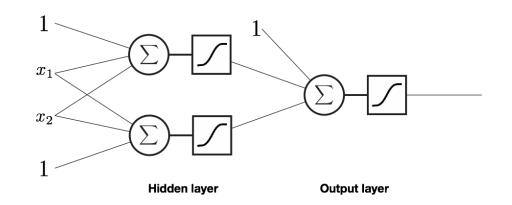


Output layer

MSE

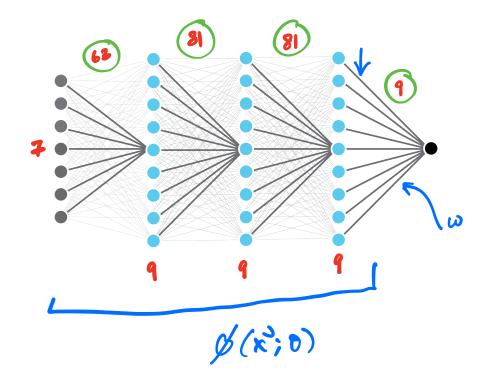
Example: a classification network

- Input: 2D, real numbers
- **Output**: 1D, class labels 0 or 1
- ► Hidden layer size: 2
- Number of weights: 9
- **Loss**: Cross-entropy
- Data likelihood under Bernoulli distribution



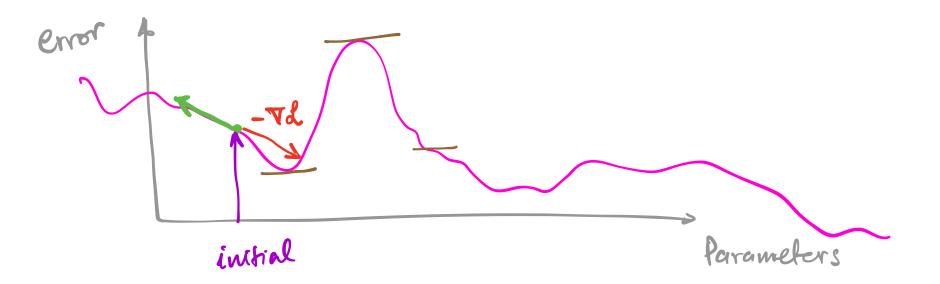
Current view – deep neural networks

- Multi-layer networks
 - These networks are deeper than these are wider
- Hierarchical representation
 - Reduces semantic gap
- Deep networks outperform humans on many tasks
- Access to data
- Advances in computer science, physics and engineering



Gradient-based learning in neural networks

- Non-linearities of neural networks render most cost functions non-convex
- Use iterative gradient based optimizers to drive cost function to lower values
- Gradient descent applied to non-convex cost functions has no guarantees is sensitive to initial conditions
 - Initialize weights to small random values
 - Initialize biases to zero or small positive values



Copyright and License

©Faisal Z. Qureshi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.