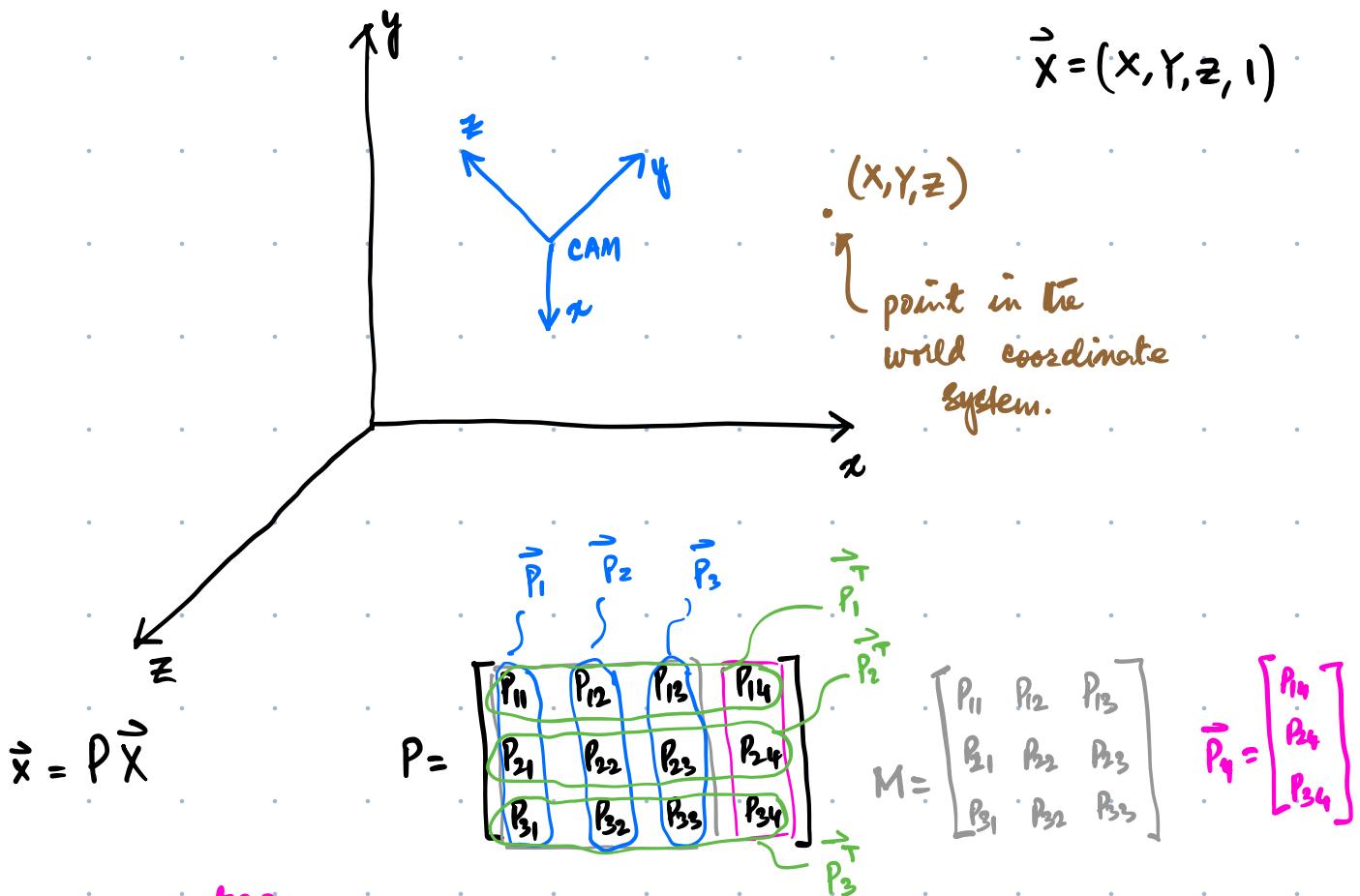


Jan 23, 2026



* Camera center:

(i) Right null-space of P . $\Leftrightarrow P\vec{c} = \phi$.

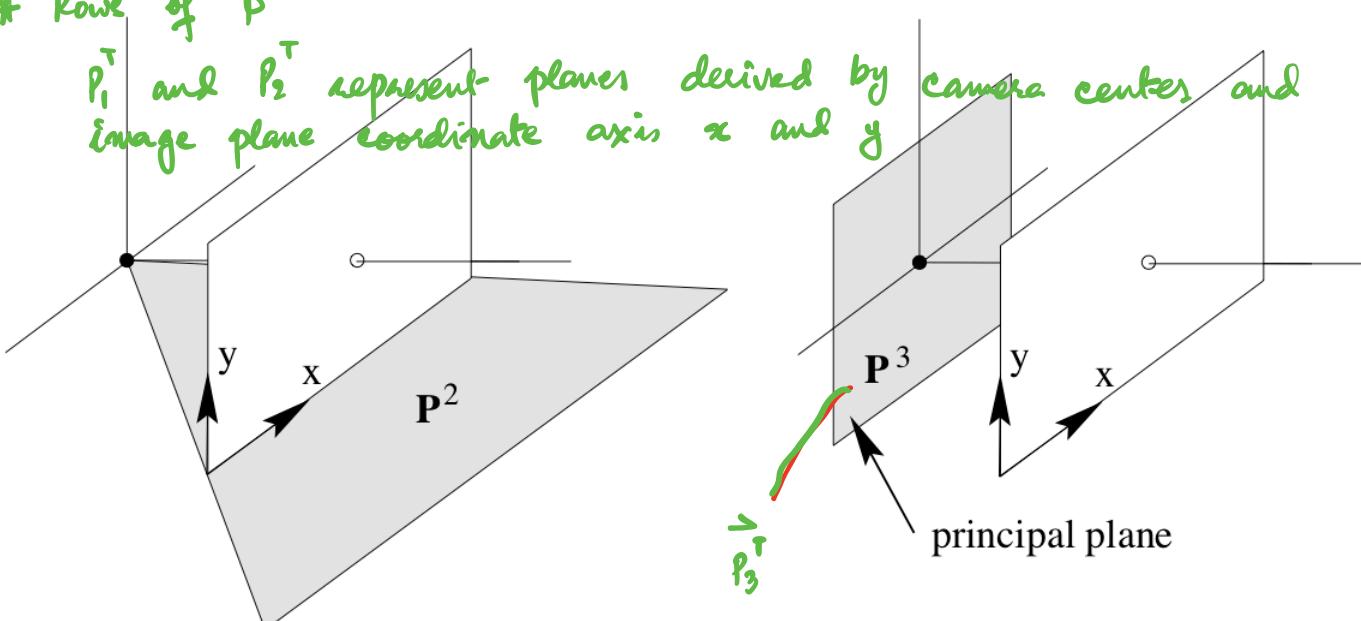
(ii) For finite cameras: $\vec{c} = -M^{-1}\vec{p}_4$ where $c = (\vec{c}, 1)^T$.

* Columns of P

P_1, P_2 , and P_3 represent vanishing point in x, y , and z directions

* Rows of P

P_1^T and P_2^T represent planes derived by image plane coordinate axis x and y camera center and



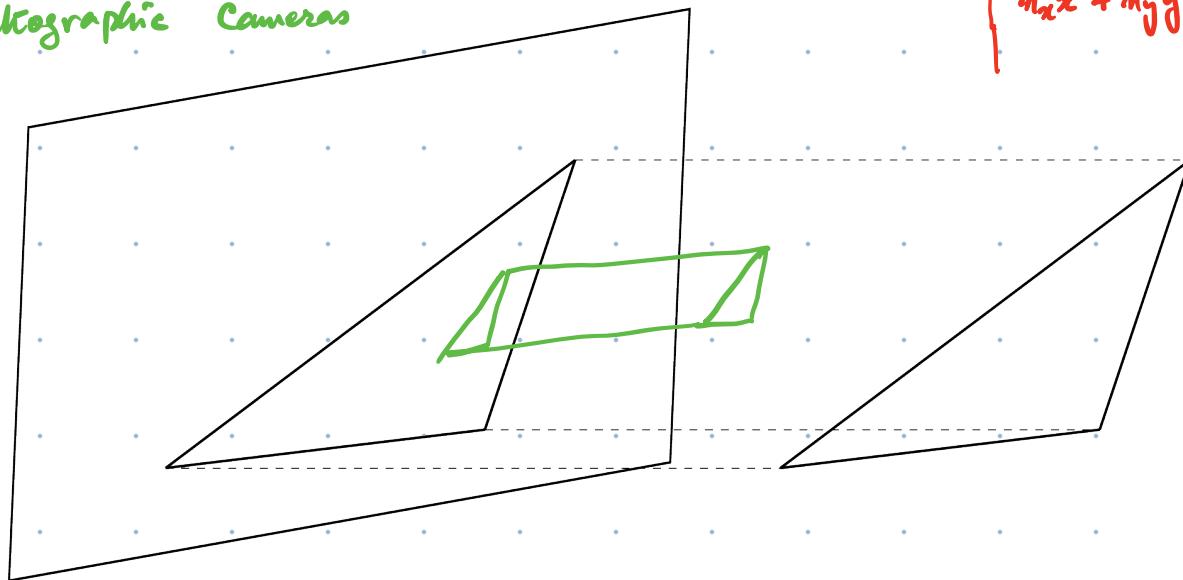
Eq. of a plane:

$$ax + by + cz + d = 0$$

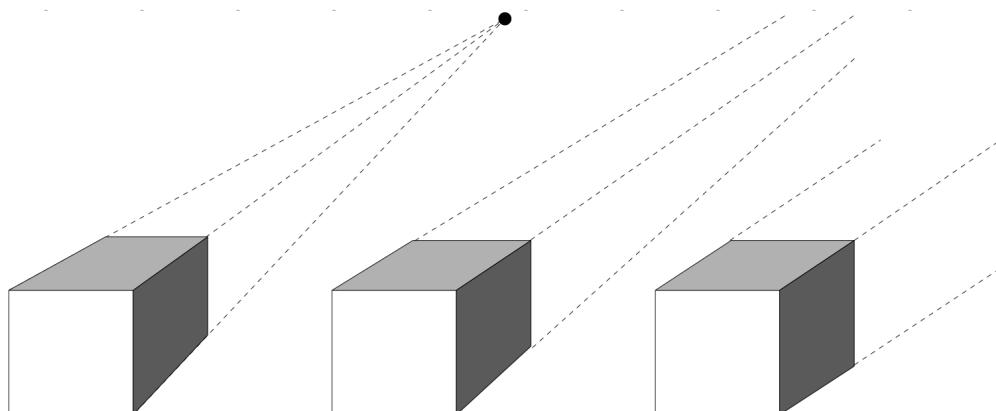
Eq. of a plane passing through \vec{p} and normal \vec{n} .

$$n_x x + n_y y + n_z z + \vec{n} \cdot \vec{p} = 0$$

Dallographic Cameras



$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

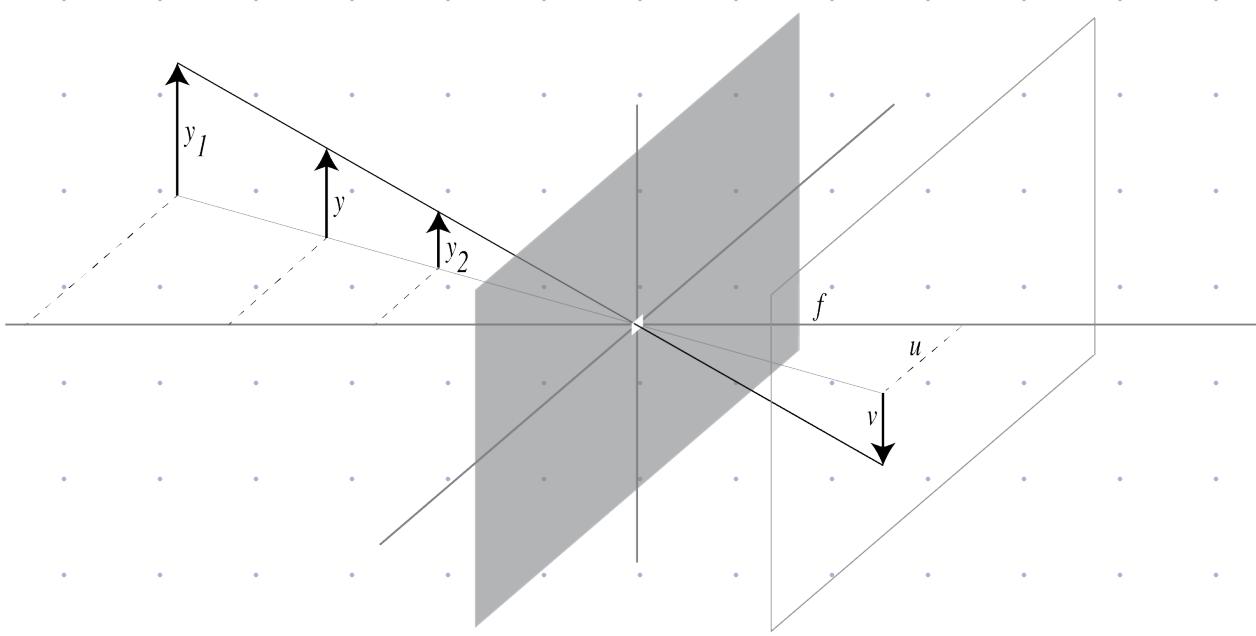
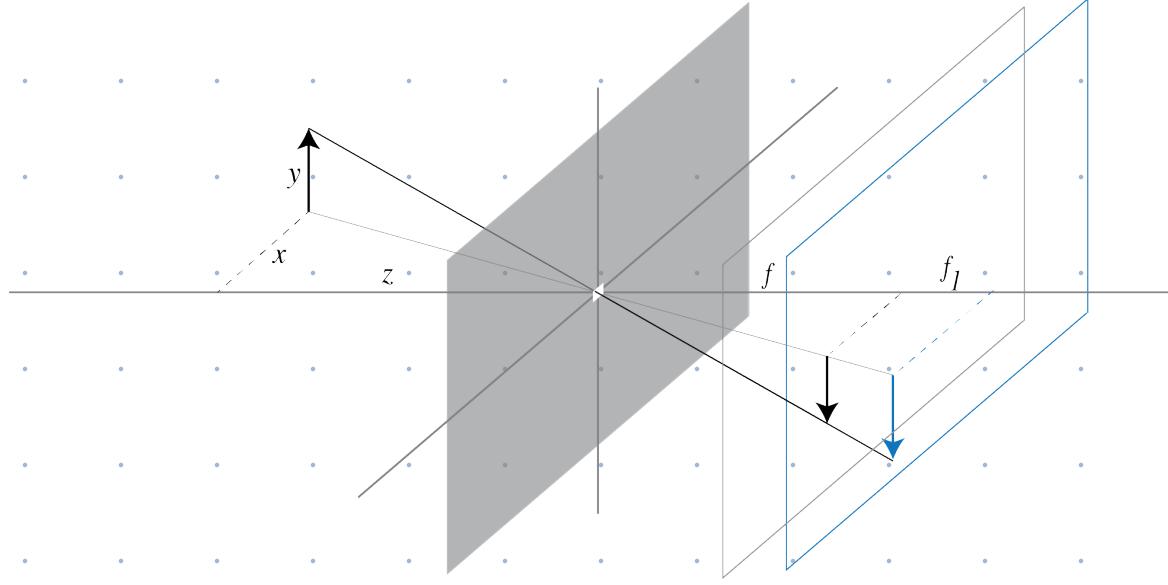


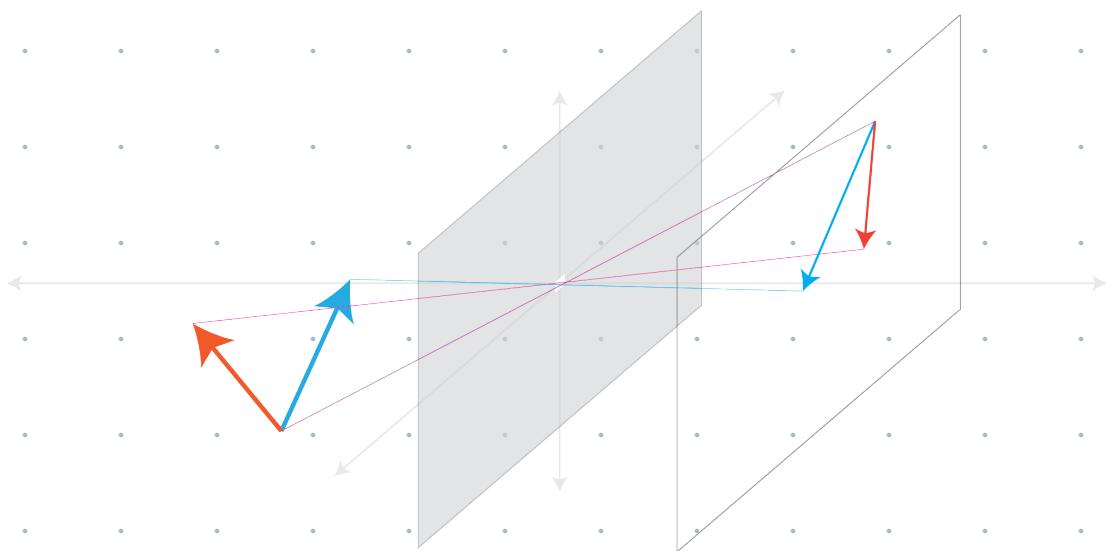
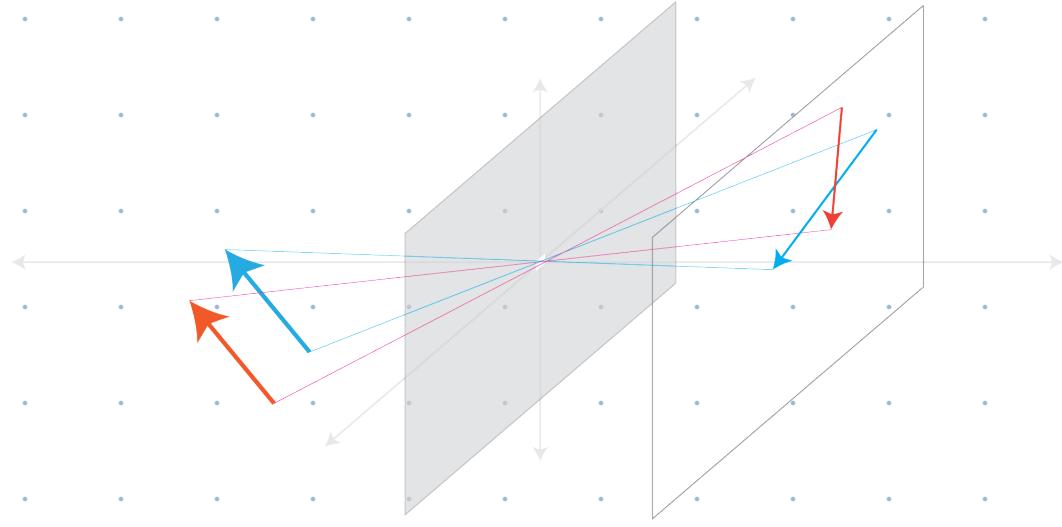
perspective

weak perspective

increasing focal length \rightarrow

increasing distance from camera \rightarrow





* Forward Projection

$$\vec{\tilde{x}} = \vec{P} \vec{x}$$

* Backprojection

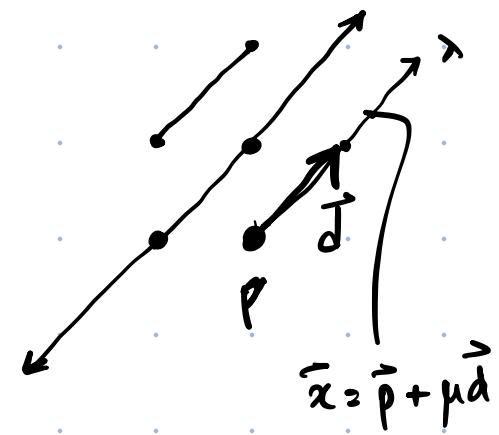
Maps image points to rays in the world

$$\vec{x}(\lambda) = \vec{P} \vec{\tilde{x}} + \lambda \vec{c}$$

image point
pseudo inverse of P

$$P^+ = P^T (P P^T)^{-1}$$

camera center



For finite cameras:

$$\vec{x}(\mu) = \mu \begin{pmatrix} M \vec{x} \\ 0 \end{pmatrix} + \begin{pmatrix} -M \vec{p}_4 \\ 1 \end{pmatrix}$$

$$P \begin{pmatrix} M \\ \vec{p}_4 \end{pmatrix}$$

Center of projection:

$$\begin{bmatrix} -M \vec{p}_4 \\ 1 \end{bmatrix}$$

$$\vec{x}(\mu) = \mu \begin{pmatrix} M \vec{x} \\ 0 \end{pmatrix} + \begin{pmatrix} -M \vec{p}_4 \\ 1 \end{pmatrix}$$

