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How do we resize images?
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Let’s consider a 1D image
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We want to increase its width by 
a factor of 2



Let’s consider a 1D image
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Resampling pixel locations
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Resampling pixel locations
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Resampling pixel locations
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and 2?
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Resampling pixel locations
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How do we compute location 
values for the 6 pixels between 0 
and 2?
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Resampling pixel locations
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What is the location (between 0 and 
2) of the shaded pixel?
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Resampling pixel locations
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What is the location (between 0 and 
2) of the shaded pixel?

𝑥 =
2

6
𝑦

Given

Last pixel location in original image = 2
Last pixel location in resulting image = 6

Use the following relationship (that we 
developed in previous slides): 

Sample location is

𝑥 =
2

6
5 = 1.667

5

0 1 2

1.667



Resampling pixel locations

Consider a 16-pixel 1D image.  You are asked to resize it to a 5-pixel 1D 
image.  What is the location of pixel 2 (between 0 and 15) of the new image?
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Original image

Resized image

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Downscaling



Resampling pixel locations

Consider a 16-pixel 1D image.  You are asked to resize it to a 5-pixel 1D 
image.  What is the location of pixel 2 (between 0 and 15) of the new image?
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑥 =
15

4
𝑦

Given

Last pixel location in original image = 15
Last pixel location in resulting image = 4

Use the relationship developed earlier

𝑥 =
15

4
1 = 3.75 ≈ 4

Sample location is



Resampling pixel locations (in 2D)
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Enlarge the image

Reduce the image



How to compute new pixel values? 
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How to compute new pixel values? 
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Nearest-Neighbor Interpolation



How to compute new pixel values? 
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How to compute new pixel values? 

Faisal Qureshi - CSCI 3240U 17

7 4 3

7 7 4

3
7

4

Nearest-Neighbor Interpolation



How to compute new pixel values? 
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How to compute new pixel values? 
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Nearest-Neighbor Interpolation

• Easy to implement.

• Results in blocky or pixelated results

• Does not consider neighboring pixels

• Losses details and smoothness

• Use other methods, e.g., bilinear, bicubic, etc., for higher-quality image 
resizing
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Nearest-Neighbor Interpolation
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480 x 360 px

Nearest-NeighborOriginal

2592 x 1944 px



Nearest-Neighbor Interpolation
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480 x 360 px480 x 360 px

Nearest-NeighborBilinear



Linear Interpolation
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2D Line Fitting
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𝑦 − 𝑦1

𝑦2 − 𝑦1
=

𝑥 − 𝑥1

𝑥2 − 𝑥1

A line between (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is given by:

2D Line Fitting

𝑦 = 𝑚𝑥 + 𝑏

𝑥1, 𝑦1

𝑥2, 𝑦2

𝑥

𝑦



2D Line Fitting
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𝑦 − 𝑦1

𝑦2 − 𝑦1
=

𝑥 − 𝑥1

𝑥2 − 𝑥1

A line between (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is given by:

2D Line Fitting

𝑦 =
(𝑦2 − 𝑦1) 

(𝑥2 − 𝑥1)
𝑥 −

𝑦2 − 𝑦1

𝑥2 − 𝑥1
𝑥1 + 𝑦1

Re-writing yields

𝑚 =
(𝑦2 − 𝑦1) 

(𝑥2 − 𝑥1)

𝑏 = −
𝑦2 − 𝑦1

𝑥2 − 𝑥1
𝑥1 + 𝑦1

Therefore

𝑦 = 𝑚𝑥 + 𝑏

𝑥1, 𝑦1

𝑥2, 𝑦2

𝑥

𝑦



2D Line Fitting
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A line between (𝑥1, 𝑦1) and (𝑥2, 𝑦2) is given by:

𝑥1𝑚 + 𝑏 = 𝑦1

𝑥2𝑚 + 𝑏 = 𝑦2

𝑥1 1
𝑥2 1

𝑚
𝑏

=
𝑦1

𝑦2

𝑚
𝑏

=
𝑥1 1
𝑥2 1

−1 𝑦1

𝑦2

Re-write 

as 

Matrix form

2D Line Fitting

𝑎 𝑏
𝑐 𝑑

−1

=
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏

−𝑐 𝑎

where 

𝑦 = 𝑚𝑥 + 𝑏

𝑥1, 𝑦1

𝑥2, 𝑦2

𝑥

𝑦



Linear Interpolation
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Compute the value for shaded pixel?  

0 1 2

Setup a line between (0,7) and 
(1,4) and evaluate it at 𝑥 value 
corresponding to the shaded 
location 

(0,7)

(1,4) (2,3)

𝑥



Linear Interpolation
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Compute the value for shaded pixel?  

Setup a line between (1,4) and 
(2,3) and evaluate it at 𝑥 value 
corresponding to the shaded 
location 
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Linear Interpolation
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Compute the value for shaded pixel?  

Setup a line between (1,4) and 
(2,3) and evaluate it at 𝑥 value 
corresponding to the shaded 
location 

3
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0 1 2

(0,7)

(1,4) (2,3)

𝑥new

0 1

Trick: A common trick is to re-index 
the original pixel locations to 0 and 1.  
This simplifies the calculations.

Don’t forget to update the 𝑥 value.  In 
this example 𝑥new =  𝑥 −  1.

Now we setup a line between (0,4) 
and (1,3) and evaluate it at 𝑥new 
value.

0 1



Images as surfaces
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Images are not just 1D.  How do we deal with a 2D image?

Consider the following 3x3 2D image.  



Images as surfaces
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Images are not just 1D.  How do we deal with a 2D image?

Consider the following 3x3 2D image.  

width

height

intensities



Images as surfaces
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Images are not just 1D.  How do we deal with a 2D image?

Consider the following 3x3 2D image.  

width

height

intensities

2D image as a 
surface in 3D



Images as surfaces
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Images are not just 1D.  How do we deal with a 2D image?

Consider the following 3x3 2D image.  

width

height

intensities

2D image as a 
surface in 3D

Are these planar patches?



Images as surfaces
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Images are not just 1D.  How do we deal with a 2D image?

Consider the following 3x3 2D image.  

width

height

intensities

2D image as a 
surface in 3D

Are these planar patches? No



Images as surfaces
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width

height

intensities

2D image as a 
surface in 3D

𝐼(𝑥1, 𝑦1)

𝑥

𝑦

𝐼(𝑥1, 𝑦2) 𝐼(𝑥2, 𝑦2)

𝐼(𝑥2, 𝑦1)



Bi-linear interpolation

Faisal Qureshi - CSCI 3240U 40

𝐼(𝑥1, 𝑦1)

𝑥

𝑦

𝐼(𝑥1, 𝑦2) 𝐼(𝑥2, 𝑦2)

𝐼(𝑥2, 𝑦1)

𝐼(𝑥1, 𝑦1) 𝐼(𝑥2, 𝑦1)

𝑥1 𝑥2𝑥

𝐼 𝑥, 𝑦1 =?



Bi-linear interpolation
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𝐼(𝑥1, 𝑦1)

𝑥

𝑦

𝐼(𝑥1, 𝑦2) 𝐼(𝑥2, 𝑦2)

𝐼(𝑥2, 𝑦1)

𝐼(𝑥1, 𝑦2)

𝐼(𝑥2, 𝑦2)

𝑥1 𝑥2𝑥

𝐼 𝑥, 𝑦2 =?



Bi-linear interpolation
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𝐼(𝑥1, 𝑦1)

𝑥

𝑦

𝐼(𝑥1, 𝑦2) 𝐼(𝑥2, 𝑦2)

𝐼(𝑥2, 𝑦1)

𝐼(𝑥, 𝑦1) 𝐼(𝑥, 𝑦2)

𝑦1 𝑦2𝑦

𝐼 𝑥, 𝑦 =?



Bi-Linear interpolation
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Multi-linear polynomial

𝑓 𝑥, 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦

𝐼(𝑥𝑖, 𝑦𝑖) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑦𝑗 + 𝑎3𝑥𝑖 𝑦𝑗

Then for 𝑖, 𝑗 ∈ [1,2]

𝐼(𝑥1, 𝑦1)

𝑥

𝑦

𝐼(𝑥1, 𝑦2) 𝐼(𝑥2, 𝑦2)

𝐼(𝑥2, 𝑦1)



Bi-Linear interpolation

Faisal Qureshi - CSCI 3240U 45

Multi-linear polynomial

𝑓 𝑥, 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦

𝐼(𝑥𝑖, 𝑦𝑖) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑦𝑗 + 𝑎3𝑥𝑖 𝑦𝑗

Then for 𝑖, 𝑗 ∈ [1,2]

𝐼(𝑥1, 𝑦1)

𝑥

𝑦

𝐼(𝑥1, 𝑦2) 𝐼(𝑥2, 𝑦2)

𝐼(𝑥2, 𝑦1)

𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦



Bi-Linear interpolation
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Multi-linear polynomial

𝑓 𝑥, 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦

𝐼(𝑥𝑖, 𝑦𝑖) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑦𝑗 + 𝑎3𝑥𝑖 𝑦𝑗

Then for 𝑖, 𝑗 ∈ [1,2]

𝐼(𝑥1, 𝑦1)

𝑥

𝑦

𝐼(𝑥1, 𝑦2) 𝐼(𝑥2, 𝑦2)

𝐼(𝑥2, 𝑦1)

𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦

Unknowns



Bi-Linear interpolation
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Multi-linear polynomial

𝑓 𝑥, 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦

𝐼(𝑥𝑖, 𝑦𝑖) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑦𝑗 + 𝑎3𝑥𝑖 𝑦𝑗

Then for 𝑖, 𝑗 ∈ [1,2]

𝐼(𝑥1, 𝑦1)

𝑥

𝑦

𝐼(𝑥1, 𝑦2) 𝐼(𝑥2, 𝑦2)

𝐼(𝑥2, 𝑦1)

𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥𝑦

Unknowns

1 𝑥1

1 𝑥2

𝑦1 𝑥1𝑦1

𝑦1 𝑥2𝑦1

1 𝑥1

1 𝑥2

𝑦2 𝑥1𝑦2

𝑦2 𝑥2𝑦2

𝑎0

𝑎1
𝑎2

𝑎3

=

𝐼(𝑥1, 𝑦1)
𝐼(𝑥2, 𝑦1)
𝐼(𝑥1, 𝑦2)
𝐼(𝑥2, 𝑦2)

Solve for the unknowns using the following 
system of equations

⟹

𝑎0

𝑎1
𝑎2

𝑎3

=

1 𝑥1

1 𝑥2

𝑦1 𝑥1𝑦1

𝑦1 𝑥2𝑦1

1 𝑥1

1 𝑥2

𝑦2 𝑥1𝑦2

𝑦2 𝑥2𝑦2

−1 𝐼(𝑥1, 𝑦1)
𝐼(𝑥2, 𝑦1)
𝐼(𝑥1, 𝑦2)
𝐼(𝑥2, 𝑦2)



Bilinear interpolation: Pros

• Smoothing Effect, which helps reduce jagged edges and pixelation.

• Simple to Implement, requires fewer calculation and computational 
inexpensive as compared to other methods

• Maintains linearity between the known data points, which can be desirable 
in certain applications, such as computer graphics.
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Bilinear interpolation: Cons

• Loss of sharpness and fine details

• Color artifacts

• No consideration for high-frequency components
• Not suitable for images with intricate patterns or textures

• Not ideal for large scaling

• Limited accuracy and it may not be suitable for photometric applications
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Comparing two images

• Mean Squared Error
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MSE =
1

𝐻𝑊
෍

𝑥=1

𝑊

෍

𝑦=1

𝐻

𝐼1 𝑥, 𝑦 − 𝐼2 𝑥, 𝑦
2



Comparing two images

• Peak Signal-to-Noise Ratio

• MAX refers to the maximum value of a pixel, so for an 8-bit image, MAX =
28 = 255

• Units are in decibels (db)

• MSE is averaged squared error, therefore, signal power needs to expressed 
in square as well.  Generally, power is the square of amplitude.  
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PSNR = 10 log10

MAX2

MSE
 



Peak Signal to Noise Ratio(PSNR = 10 log10
MAX2

MSE
 )

• Compression of range
• Signal-to-noise ratios can span orders of magnitude (from 1 to 10,000+). The log compresses 

this into a manageable scale (e.g. 0–60 dB).

• Additivity
• Using log turns multiplicative ratios into additive values (e.g. a 10 × improvement = +10 

dB).

• Perception 
• Human senses (hearing, vision, brightness perception) roughly follow a logarithmic response 

— so the log scale correlates better with perceived differences.

The log in PSNR makes huge ratios easier to interpret, aligns with human 
perception, and is consistent with the dB convention for measuring power ratios.
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How good is your interpolation algorithm?

• Start with a high-quality, high-resolution reference image: 𝐼HR

• Construct a truth pair by down sampling 𝐼HR to construct 𝐼LR using a gold-standard antialias 
(e.g., sinc/Lanczos with strong low-pass)
• A good starting point is to perform Gaussian blur and then down-sample

Case 1: Down sampling

• Use your algorithm to downsample 𝐼HR and compare the result with 𝐼LR using MSE and PSNR

Case 2: Up sampling

• Use your algorithm to upsample 𝐼LR and compare the result with 𝐼HR using MSE and PSNR

This technique will allow you to compare your interpolation method against 
each other.  This is sometimes referred to as reference-based protocol.
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Other considerations

• Downscaling specifics (antialias matters most)
• A good downscale = low-pass then sample.
• Check spectra: energy above target Nyquist should be minimal.
• Compare kernels (bicubic/Lanczos/B-spline) for stopband attenuation vs. ringing tradeoffs.

• Upscaling specifics
• Evaluate edge preservation (thin lines, diagonals), texture fidelity, and halo control.
• If you prefer “crisp”, quantify it: combine gradient magnitude stats with a ringing penalty 

near edges.

• Efficiency & robustness
• Runtime & memory (per megapixel) on CPU/GPU; batch behavior.
• Stability across scale factors (e.g., 0.5 ×, 0.7 ×, 1.5 ×, 3 ×) and aspect-ratio changes.
• Determinism (same bits in = same output) when you need reproducibility.
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Image quality

• Fidelity 
• Looks like the original at the intended scale

• Sharpness vs. ringing 
• Edges crisp but no halos

• Alias suppression 
• No moiré/zippering on patterns

• Color faithfulness 
• No hue shifts; correct gamma handling

• Temporal consistency 
• If resizing video or bursts
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Bicubic interpolation

• Bicubic interpolation is a method for image resizing that calculates new 
pixel values using the nearest 16 pixels (a 4x4 grid).

• It produces smoother and higher-quality results compared to simpler 
methods like nearest-neighbor and bilinear interpolation.
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Cubic Interpolation (in 1D)
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Cubic Interpolation (in 1D)
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𝑓 𝑥 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

Approximate local structure using a cubic polynomial

This equation has four unknowns, so we 
need at least four points to fit this model 

(to the available image intensities)

𝑓(𝑥)

𝑥

𝑖 𝑖 + 1 𝑖 + 2



Cubic Interpolation (in 1D)
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𝑓 𝑥 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

Approximate local structure using a cubic polynomial

This equation has four unknowns, so we 
need at least four points to fit this model 

(to the available image intensities)

To keep things simple, we re-index 
pixel locations from -1 to +2, such 
that the interpolation location lies 

between 0 and 1

-1 0 1

2

𝑓(𝑥)

𝑥



Cubic Interpolation (in 1D)

Faisal Qureshi - CSCI 3240U 63
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𝑓 𝑥 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

Approximate local structure using a cubic polynomial

This equation has four unknowns, so we 
need at least four points to fit this model 

(to the available image intensities)

To keep things simple, we re-index 
pixel locations from -1 to +2, such 
that the interpolation location lies 

between 0 and 1

-1 0 1

2

𝑓(𝑥)

𝑥

𝑥new

We need to adjust 𝑥, since we have 
shifted the origin (for the original 

pixel locations): 𝑥𝑛𝑒𝑤 = 𝑥 − (𝑖 + 1)



Cubic Interpolation (in 1D)
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𝑓 𝑥 = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

Approximate local structure using a cubic polynomial

To keep things simple, we re-index 
pixel locations from -1 to +2, such 
that the interpolation location lies 

between 0 and 1

-1 0 1

2

𝑓(𝑥)

𝑥

𝑥new

Solve for 𝑎, 𝑏, 𝑐, and 𝑑 using

𝑓 −1 = −𝑎 + 𝑏 − 𝑐 + 𝑑

𝑓 0 = 𝑑

𝑓 1 = 𝑎 + 𝑏 + 𝑐 + 𝑑

𝑓 2 = 8𝑎 + 4𝑏 + 2𝑐 + 𝑑

Evaluate at the fitted cubic polynomial at 𝑥new

We need to adjust 𝑥, since we have 
shifted the origin (for the original 

pixel locations): 𝑥𝑛𝑒𝑤 = 𝑥 − (𝑖 + 1)



Bicubic Interpolation
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Fit 4 cubic polynomials along 𝑦 using the blue, orange, pink 
and green values, respectively

𝑥

𝑦

Sample cubic polynomials using 𝑦 value of the desired 
location

Fit a cubic polynomial (black) using the 4 sampled values

Sample this cubic polynomial using the desired 𝑥 location



Bicubic Interpolation
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Fit 4 cubic polynomials along 𝑦 using the blue, orange, pink 
and green values, respectively

𝑥

𝑦

Sample cubic polynomials using 𝑦 value of the desired 
location

Fit a cubic polynomial (black) using the 4 sampled values

Sample this cubic polynomial using the desired 𝑥 location

Set this location as (0,0) to keep calculations tidy.  This 
means that the interpolation is always taking place in (0,0) 

and (1,1) window



Bicubic interpolation: Pros

• Better Image Quality:
• Reduces jagged edges and pixelation, handling edges and gradients effectively.

• Improved Detail Preservation:
• Retains fine details, ideal for upscaling images.

• Smooth Transitions:
• Minimizes artifacts like sudden intensity changes, providing a natural look.

• Widely Used:
• Implemented in many image processing tools, making it a well-established method.
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Bicubic interpolation: Cons

• Slower Performance:
• More computationally expensive than simpler methods, making it slower on large 

images.

• Blurring:
• Can introduce blurriness, especially when scaling down.

• Halo Artifacts:
• Sometimes causes halo effects around edges in high-contrast areas.

• Over-Smoothing:
• May smooth out fine details too much during upscaling, leading to a soft image.
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Bicubic interpolation: Best use cases

• Moderate upscaling where image sharpness is not the highest priority but 
smoothness is.

• General-purpose resizing for photographs and images with a balance of 
speed and quality.
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Summary

• Image interpolation 
methods

• Nearest neighbor 
interpolation

• Bilinear interpolation
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(CMG Le.  Wikipedia)

Black dot denotes the 
sampled pixel value
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https://www.menti.com/bltyg9abucso

On image interpolation
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