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How do we resize images?

- 4 RN

ovcary

Downscaling

Original
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Let’s consider a 1D image

7 4 3

We want to increase its width by
a factor of 2



Let’s consider a 1D image

Upscaling

We want to increase its width by
a factor of 2
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Resampling pixel locations

7 4 3
intensityT
7
4 3
> width
0 1 2

We currently have pixel values for 3 locations



Resampling pixel locations

7 4 3
intensity
We currently
have pixel
values for 3 v
locations 4 3
> width
0 1 2
We need to

(re-sample) at
6 locations




Resampling pixel locations

How do we compute location

values for the 6 pixels between 0
7 4 3
and 27
intensity
7
4 3
0 1 2
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Resampling pixel locations

intensity
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How do we compute location
values for the 6 pixels between 0
and 2?

> <

New pixel locations

> X

0,0 . : :
(0,0 Original pixel locations



Resampling pixel locations

What is the location (between 0 and
2) of the shaded pixel?
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Resampling pixel locations

What is the location (between 0 and
2) of the shaded pixel?

Given

Last pixel location in original image = 2
7 Last pixel location in resulting image = 6
4 1.667 3

: > Use the following relationship (that we
0 1 2 developed in previous slides):
2

x=g

Sample location is

2
X = 6(5) = 1.667



Resampling pixel locations

Consider a 16-pixel 1D image. You are asked to resize it to a 5-pixel 1D
image. What is the location of pixel 2 (between 0 and 15) of the new image?

Original image

Resized image

Downscaling



Resampling pixel locations

Consider a 16-pixel 1D image. You are asked to resize it to a 5-pixel 1D
image. What is the location of pixel 2 (between 0 and 15) of the new image?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Given Use the relationship developed earlier Sample location is
. o 15 5

Last pixel location in original image = 15 X = Ty X = T (1) =3.75~ 4

Last pixel location in resulting image =4



Resampling pixel locations (in 2D)

Enlarge the image

>

Reduce the image
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How to compute new pixel values?
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How to compute new pixel values?

Nearest-Neighbor Interpolation




How to compute new pixel values?

Nearest-Neighbor Interpolation




How to compute new pixel values?

Nearest-Neighbor Interpolation




How to compute new pixel values?

Nearest-Neighbor Interpolation




How to compute new pixel values?

Nearest-Neighbor Interpolation




Nearest-Neighbor Interpolation

e Easy to implement.

* Results in blocky or pixelated results
* Does not consider neighboring pixels
* Losses details and smoothness

* Use other methods, e.g., bilinear, bicubic, etc., for higher-quality image
resizing



Nearest-Neighbor Interpolation
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Nearest-Neighbor Interpolation

Faisal Qureshi - CSCI 3240U




Linear Interpolation

1D image as a
curve in 2D
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2D Line Flttlﬂg 2D Line Fitting

A line between (x1,y1) and (x5, y,) is given by:
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2D Line Fitting
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2D Line Fitting

A line between (x1,y1) and (x5, y,) is given by:

Yy =M _ X —Xq
Y2—Y1 Xz2—Xq
Re-writing yields
y = Y2 y) W2yl ry
(X3 — xq1) (xy —x1) ! !
Therefore
_ Y2 —y1)
(xy — xq1)
(3’2 - Y1)
b=— X1 +
(xz - xl) LA
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2D Line Fitting
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2D Line Fitting

A line between (x1,y1) and (x5, y,) is given by:

Matrix form

Re-write
xym+b =y,
xom+b =y,
as
[xl 11 m _ 'y1]
x, 1iLbl Ly
my _ [ X1 1]_1 lyl
bl |x, 1 Y2
where

) .
[Ccl Z :ad—bc[d

—C

—b
a

|
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Linear Interpolation

Compute the value for shaded pixel?

Setup a line between (0,7) and

7 4 3 (1,4) and evaluate it at x value
corresponding to the shaded
location

(0,7)
~~~~~~~~ (L4 2,3)
v B D ittt L LT TP
4 3
>
x >
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Linear Interpolation

Compute the value for shaded pixel?

Setup a line between (1,4) and

7 4 3 (2,3) and evaluate it at x value
corresponding to the shaded
location

(0,7)
~~~~~~~~ (14) (2,3)
vy B D it sl L LT TP
4 3
>
% >
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Linear Interpolation

7 4 3
(0,7)
= . !
e (2,3)
vl B . it Sl LT T
Il )
A0 ;
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Compute the value for shaded pixel?

Setup a line between (1,4) and
(2,3) and evaluate it at x value
corresponding to the shaded
location

Trick: A common trick is to re-index
the original pixel locations to 0 and 1.
This simplifies the calculations.

Don’t forget to update the x value. In
this example xpeww = x — 1.

Now we setup a line between (0,4)

and (1,3) and evaluate it at Xpew
value.
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Images as surfaces

Images are not just 1D. How do we deal with a 2D image?

Consider the following 3x3 2D image.

7 4 3
9 1 3
1 2 1




Images as surfaces

Images are not just 1D. How do we deal with a 2D image?

Consider the following 3x3 2D image.

7 4 3
9 1 3
1 2 1

v/

height
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A

intensities

> width
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Images as surfaces

Images are not just 1D. How do we deal with a 2D image?

Consider the following 3x3 2D image.

7 4 3
9 1 3
1 2 1

v/

height
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A

intensities

2D image as a
surfacein 3D

> width
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Images as surfaces

Images are not just 1D. How do we deal with a 2D image?

A
Consider the following 3x3 2D image. Intensities
7 4 3 2D image as a
surface in 3D

9 1 3
1 2 1

> width

Are these planar patches?

height
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Images as surfaces

Images are not just 1D. How do we deal with a 2D image?

A
Consider the following 3x3 2D image. Intensities
7 4 3 2D image as a
surface in 3D

9 1 3
1 2 1

> width

Are these planar patches? No

height
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Images as surfaces

height

A

intensities

2D image as a
surface in 3D

> width
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I(x1,¥1)

I(x3,y1)
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I(xlt y2)

I(XZJ yZ)
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Bi-linear interpolation

I(xll yl)

I(xZ) yl)
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Bi-linear interpolation

I(xll yl)

I(xZ) yl)

1(x1,y2)

I(x3,y2)
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Bi-linear interpolation

I(xll yl)

I(xZ) yl)

1(x1,y2)

I(x3,y2)
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Bi-Linear interpolation

I(x1,¥1) I(x2,y1)
y
I(x1,y2) I(x3,y2)
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Multi-linear polynomial

f(x,y) =ay+ ax + ayy + azxy

Then for i,j € [1,2]

I(x;,yi) = ap + a1x; + ayj + azx; y;
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Multi-linear polynomial

Bi-Linear interpolation

f(x,y) =ay+ ax + ayy + azxy

Then for i,j € [1,2]

I(x;,yi) = ap + a1x; + ayj + azx; y;
I(x1,¥1) I(x2,¥1)

ag + a1x + a,y + asxy

s

I(x1,y2) I(x3,y2)
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Multi-linear polynomial

Bi-Linear interpolation

f(x,y) =ay+ ax + ayy + azxy

Then for i,j € [1,2]

I(x;,yi) = ap + a1x; + ayj + azx; y;
I(x1,¥1) I(x2,¥1)

Unknowns

Lol

apg + a1x + a,y + asxy

s

I(x1,y2) I(x3,y2)
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Multi-linear polynomial

Bi-Linear interpolation

f(x,y) =ay+ ax + ayy + azxy

Then for i,j € [1,2]

I(x;,yi) = ap + a1x; + ayj + azx; y;

I(x1,¥1) I(x2,¥1)
Unknowns
l l l l Solve for the unknowns using the following
ag + a1x + a,y + azxy system of equations
y \) 1ox Y1 Xafao]  [L(x1y1)]
1 x, Y1 X2Vi||aq _ 1(x5,v1)
________________________________________________________________ 1w v wyilles] LiGe o

= ag] 1 x 1] e ya)]

I(x1,y2) [(x2,2) A 1 x; Y1 X2)1 I(x3,y1)
azl |1 x; Y2 X1Y2 I(x1,Y2)

431 11 x; Y2 X2Y2l LI(x,, v,)d
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Bilinear interpolation: Pros

* Smoothing Effect, which helps reduce jagged edges and pixelation.

e Simple to Implement, requires fewer calculation and computational
inexpensive as compared to other methods

* Maintains linearity between the known data points, which can be desirable
in certain applications, such as computer graphics.



Bilinear interpolation: Cons

* Loss of sharpness and fine details
 Color artifacts

* No consideration for high-frequency components
* Not suitable for images with intricate patterns or textures

* Not ideal for large scaling
 Limited accuracy and it may not be suitable for photometric applications



Comparing two images

 Mean Squared Error




Comparing two images

* Peak Signal-to-Noise Ratio

MAX?

PSNR = 101
0810 MSE

« MAX refers to the maximum value of a pixel, so for an 8-bit image, MAX =
28 = 255

* Units are in decibels (db)

* MSE is averaged squared error, therefore, signal power needs to expressed
in square as well. Generally, power is the square of amplitude.



. . . 2
Peak Signal to Noise Ratio(PSNR = 1Olog10M@%%)
— v
| _Stgea —
e Compression of range  ausie

 Signal-to-noise ratios can span orders of magnitude (from 1 to 10,000+). The log compresses
this into a manageable scale (e.g. 0—60 dB).

e Additivity
* Using log turns multiplicative ratios into additive values (e.g. a 10 X improvement = +10
dB).

* Perception

 Human senses (hearing, vision, brightness perception) roughly follow a logarithmic response
— so the log scale correlates better with perceived differences.

The log in PSNR makes huge ratios easier to interpret, aligns with human
perception, and is consistent with the dB convention for measuring power ratios.
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How good is your interpolation algorithm?

(looo [owD
o . | | I,,eR
 Start with a high-quality, high-resolution reference image: Iygr HR

* Construct a truth pair by down sampling Iyr to construct I g using a gold-standard antialias
(e.g., sinc/Lanczos with strong Iow-pass% S L&d % lop

* A good starting point is to perform Gaussian blur and then down-sample :ELE & E

Case 1: Down sampling
* Use your algorithm to downsample Iyg and compare the result with I} r using MSE and PSNR

Case 2: Up sampling
* Use your algorithm to upsample I g and compare the result with Iyg using MSE and PSNR

This technique will allow you to compare your interpolation method against
each other. This is sometimes referred to as reference-based protocol.
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Other considerations

* Downscaling specifics (antialias matters most)
* A good downscale = low-pass then sample.
* Check spectra: energy above target Nyquist should be minimal.
* Compare kernels (bicubic/Lanczos/B-spline) for stopband attenuation vs. ringing tradeoffs.

* Upscaling specifics
* Evaluate edge preservation (thin lines, diagonals), texture fidelity, and halo control.

* If you prefer “crisp”, quantify it: combine gradient magnitude stats with a ringing penalty
near edges.

* Efficiency & robustness
* Runtime & memory (per megapixel) on CPU/GPU; batch behavior.
 Stability across scale factors (e.g., 0.5 X, 0.7 X, 1.5 X, 3 X) and aspect-ratio changes.
* Determinism (same bits in = same output) when you need reproducibility.



Image quality

* Fidelity

* Looks like the original at the intended scale

* Sharpness vs. ringing
* Edges crisp but no halos

 Alias suppression
* No moiré/zippering on patterns
* Color faithfulness
* No hue shifts; correct gamma handling

* Temporal consistency
* |If resizing video or bursts



Bicubic interpolation

* Bicubic interpolation is a method for image resizing that calculates new
pixel values using the nearest 16 pixels (a 4x4 grid).

* It produces smoother and higher-quality results compared to simpler
methods like nearest-neighbor and bilinear interpolation.



Cubic Interpolation (in 1D)
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Cubic Interpolation (in 1D)

Original image intensities

f(x)

A

/ Approximate local structure using a cubic polynomial
f(x) =ax®>+bx*+cx+d

This equation has four unknowns, so we
need at least four points to fit this model
(to the available image intensities)

> X

i i+1:

i+ 2 Pixel locations
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Cubic Interpolation (in 1D)

f(x)
n A
x
(%]

C
e
=

Q

o]4)

o
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C
20
@) > X

Pixel locations
2

1

To keep things simple, we re-index

pixel locations from -1 to +2, such

that the interpolation location lies
between O and 1

Faisal Qureshi - CSCI

Approximate local structure using a cubic polynomial
f(x) =ax®>+bx*+cx+d
This equation has four unknowns, so we

need at least four points to fit this model
(to the available image intensities)
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Cubic Interpolation (in 1D)

Original image intensities

f(x) | .
A We need to adjust x, since we have
shifted the origin (for the original
pixel locations): x, ey = x — (i + 1)
xnew
—>
A > X
-1 0 : 1 Pixel locations

2

To keep things simple, we re-index

pixel locations from -1 to +2, such

that the interpolation location lies
between 0 and 1

Approximate local structure using a cubic polynomial
f(x) =ax®>+bx*+cx+d
This equation has four unknowns, so we

need at least four points to fit this model
(to the available image intensities)
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Cubic Interpolation (in 1D)

Original image intensities

f(x) | .
A V\S/Eh:ceezdt;oe aoc::;isr;c (J;;)?*Thcee (\)A;(iegihnaavle / Approximate local structure using a cubic polynomial
pixel locations): x, ey = x — (i + 1) Fx) = ax® 4+ bx? 4 cx + d
Solve for a, b, ¢, and d using
f(=1)=—a+b—-c+d
Xnew f(O) =d
—>
— > X f)=a+b+c+d
-1 0 : 1 Pixel locations

, f(2) =8a+4b+2c+d

Evaluate at the fitted cubic polynomial at xpew

To keep things simple, we re-index

pixel locations from -1 to +2, such

that the interpolation location lies
between 0 and 1
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Bicubic Interpolation

Fit 4 cubic polynomials along y using the blue, , pink
and green values, respectively

O
O—

Sample cubic polynomials using y value of the desired
location

Fit a cubic polynomial (black) using the 4 sampled values

D
<

Sample this cubic polynomial using the desired x location

—O0—*+0—90
—O0—%0—0

—©
—O
=

v Faisal Qureshi - CSCI 3240U 65



Bicubic Interpolation

Set this location as (0,0) to keep calculations tidy. This
means that the interpolation is always taking place in (0,0)
and (1,1) window

Fit 4 cubic polynomials along y using the blue, , pink
and green values, respectively

O
O——
'\_/

Sample cubic polynomials using y value of the desired
location

Fit a cubic polynomial (black) using the 4 sampled values

VY
YV

Sample this cubic polynomial using the desired x location

o—0+0—¢
—0—+0—@

—©
—O
=
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Bicubic interpolation: Pros

* Better Image Quality:
* Reduces jagged edges and pixelation, handling edges and gradients effectively.

* Improved Detail Preservation:
e Retains fine details, ideal for upscaling images.

* Smooth Transitions:
* Minimizes artifacts like sudden intensity changes, providing a natural look.

* Widely Used:

* Implemented in many image processing tools, making it a well-established method.



Bicubic interpolation: Cons

e Slower Performance:

* More computationally expensive than simpler methods, making it slower on large
Images.

e Blurring:
* Can introduce blurriness, especially when scaling down.

* Halo Artifacts:
 Sometimes causes halo effects around edges in high-contrast areas.

* Over-Smoothing:
* May smooth out fine details too much during upscaling, leading to a soft image.



Bicubic interpolation: Best use cases

* Moderate upscaling where image sharpness is not the highest priority but
smoothness is.

* General-purpose resizing for photographs and images with a balance of
speed and quality.



Ssummary

* Image interpolation
methods

* Nearest neighbor
interpolation

* Bilinear interpolation

Black dot denotes the
sampled pixel value

1D nearest- Linear
neighbour

2D nearest-

neighbour Bilinear

(CMG Le. Wikipedia)
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Bicubic

nearest
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bilinear

0 1 2 3 4
00 02 04 06 08 10

bicubic
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N
E -
On image interpolation

https://www.menti.com/bltyg9abucso
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