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Today’s lecture

• Gaussian image pyramids
• Laplacian image pyramids
• Laplacian blending

Faisal Qureshi - CSCI 3240U 2

REDUCTION IN
SAMPLING RATE

IF
mm

1 2 2 image

nuasioa fh.EE uxeimage

Tax
lowpassfilter
and

as imageAveraging
Transgender

kernel



Gaussian image pyramids

• Blur the image with a Gaussian kernel
• Reduce image dimensions by half

• Discard every other row and column

• Repeat
• Till the desired numbers of levels have 

been reached or till the image because 
1x1
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Courtesy: Forsyth
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Gaussian image pyramids
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Laplace operator
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Laplacian of a Gaussian 
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Source: Lazebnik

We can approximate the Laplacian of a Gaussian as follows
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Laplacian image pyramids
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1. ෤𝑔𝑖 = 𝑤 ∗ 𝑔𝑖

2. Downsample ෤𝑔𝑖 by dropping every 
other row or column

Pyramid Up

1. Upsample 𝑔𝑖 by adding 0 between 
samples to create ෤𝑔𝑖

2. 𝑔′𝑖−1 = 𝑤 ∗ ෤𝑔𝑖.  This will fill in the 
0s added in the previous step
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Laplacian image pyramid

• Convolve 𝑔𝑖 with low-pass filter 𝑤 and 
down-sample by half to construct 𝑔𝑖+1

• Downsample by discarding every other row and 
column

• Upsample 𝑔𝑖+1 by double by inserting 0s 
and and interpolating the missing values by 
convolving it with 𝑤 and create 𝑔′𝑖

• Compute 𝐿𝑖 = 𝑔𝑖 − 𝑔′𝑖
• Repeat
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Given image 𝑰 = 𝒈𝟎
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Reconstructing the original image

• 𝑔𝑛 is upsampled by inserting 0s and interpolating the missing value by 
convolving with 𝑤 to get 𝑔′𝑛−1

• Compute 𝑔𝑛−1 = 𝑔′𝑛−1 + 𝐿𝑛−1

• Repeat till 𝑔0 
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An Example of Laplacian Blending

Laplacian Blending
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Uses

• Scale-invariant image analysis
• Template matching
• Image registration
• Image enhancement
• Interest point detection
• Object detection
• Image compression
• …
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Summary
• Gaussian pyramid

• Coarse-to-fine search
• Multi-scale image analysis (hold this thought)

• Laplacian pyramid
• More compact image representation
• Can be used for image compositing (computation photography)

• Downsampling
• Nyquist limit: The Nyquist limit gives us a theoretical limit to what rate we have to 

sample a signal that contains data at a certain maximum frequency. Once we sample 
below that limit, not only can we not accurately sample the signal, but the data we 
get out has corrupting artifacts. These artifacts are "aliases".

• Need to sufficiently low-pass before downsampling
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Various image representations

• Pixels
• Great for spatial processing, poor access to frequency

• Fourier transform
• Great for frequency analysis, poor spatial info

• Pyramids
• Trade-off between spatial and frequency information

Faisal Qureshi - CSCI 3240U 15


