Questions	q1	q2	q3	q4	q5	q6	q7	q8	q9	total
Mean	77.777778	75.555556	88.4615385	61.875	75.7142857	56.4102564	47.3484848	64.7058824	51.6666667	50.0649351
Maximum	100	100	100	100	100	100	100	100	100	91.4285714

Computational Photography (CSCI 3240U)

Faisal Z. Qureshi
http://vclab.science.ontariotechu.ca

Today's lecture

- How to compute image derivatives by fitting polynomials to 1D image patches?
 - Taylor series expansion around a patch center
 - Least square fitting of a system of linear equations

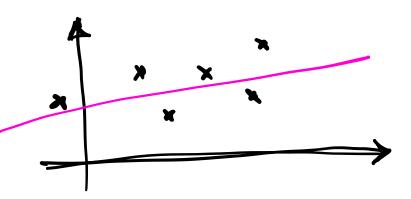


Image as a surface in 3D

Consider a gray-scale image I(x, y) then the height of the surface at (x, y) is I(x, y). The surface passes through the 3D point (x, y, I(x, y)).

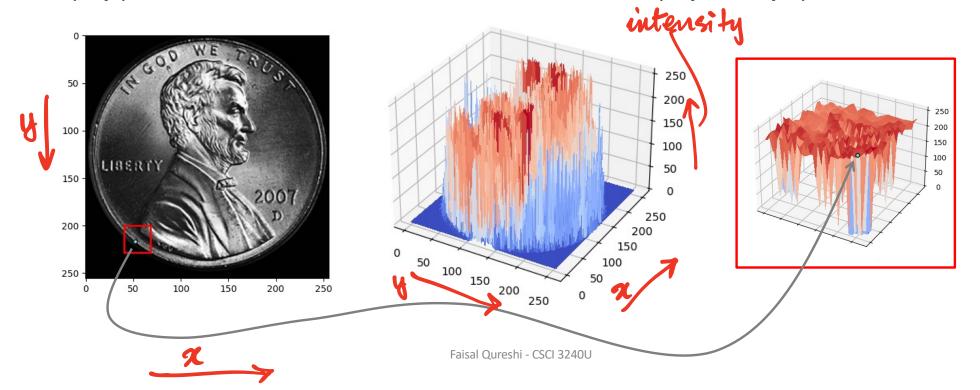
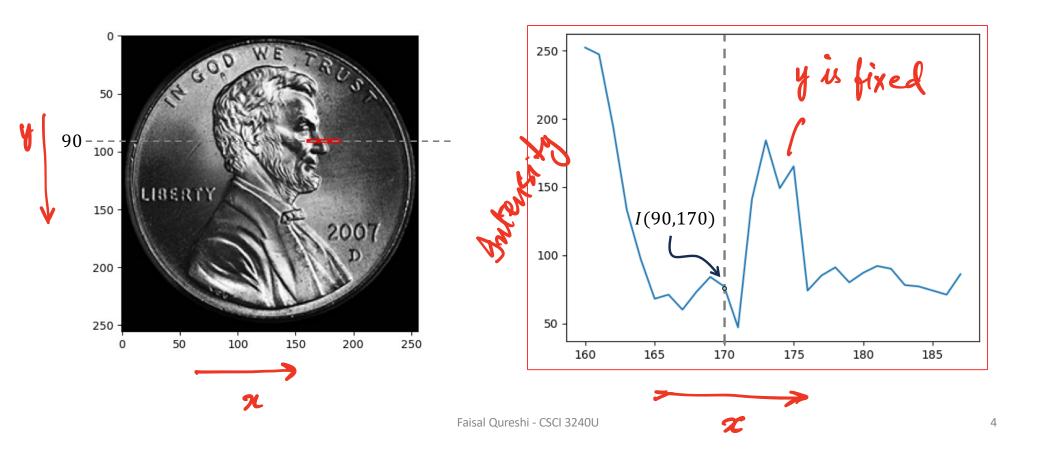
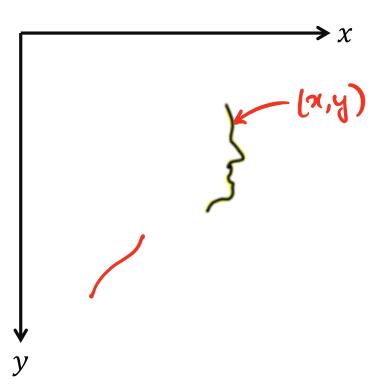


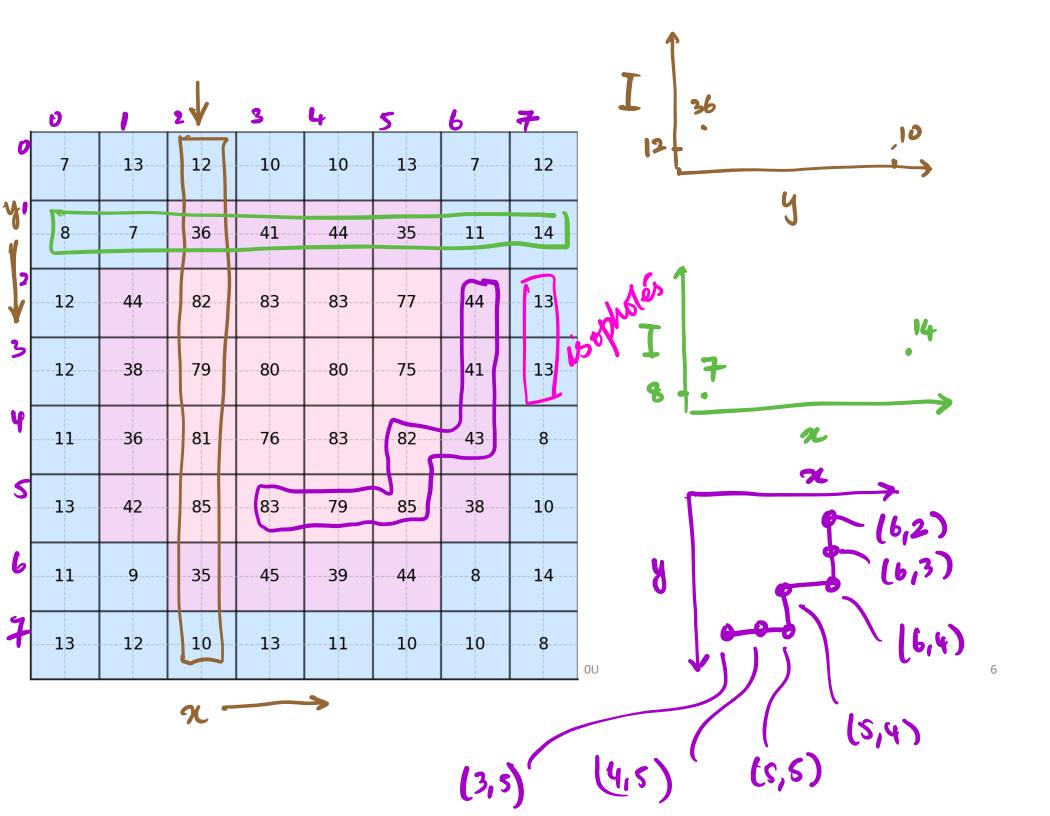
Image rows (or columns) as 2D graphs



Paths as curves in 2D



Faisal Qureshi - CSCI 3240U



2D curves for image editing and enhancement

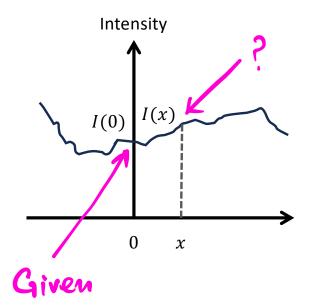
- Object boundaries
- Group of neighboring pixels having the same intensity (isophotes)
- Important tool for image editing and enhancement

Goal

- How do we model 2D curves?
- How do we describe the basic properties of these curves?

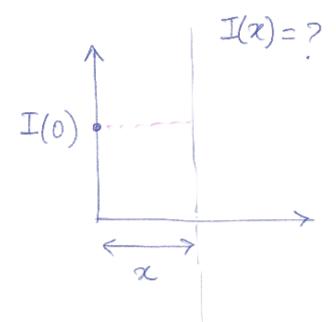
Image rows (or columns) as 2D graphs

Polynomial approximation



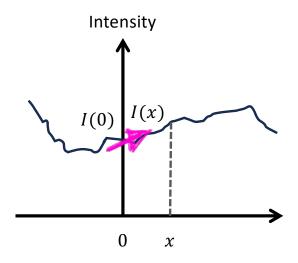
Taylor series expansion of I(x) near the "patch" center 0

$$I(x) = ?$$



Faisal Qureshi - CSCI 3240U

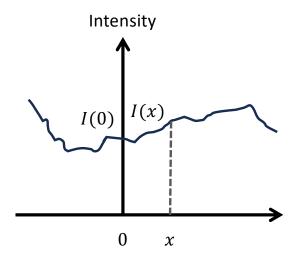
Image rows (or columns) as 2D graphs Polynomial approximation



Taylor series expansion of I(x) near the "patch" center 0

$$I(x) = I(0)$$

Image rows (or columns) as 2D graphs Polynomial approximation

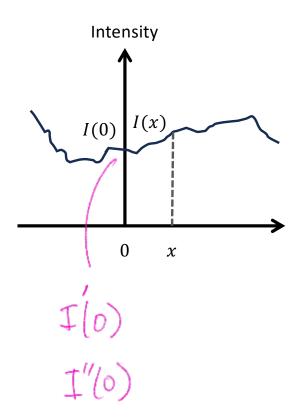


Taylor series expansion of I(x) near the "patch" center 0

$$I(x) = I(0) + xI'(0)$$

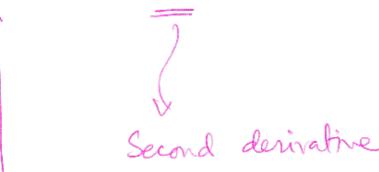
Rust Derivative

Image rows (or columns) as 2D graphs Polynomial approximation



Taylor series expansion of I(x) near the "patch" center 0

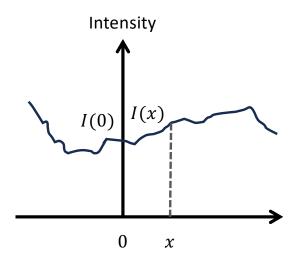
$$I(x) = I(0) + xI'(0) + \frac{x^2}{2!}I''(0)$$



Prediction

Image rows (or columns) as 2D graphs

Polynomial approximation



Taylor series expansion of I(x) near the "patch" center 0

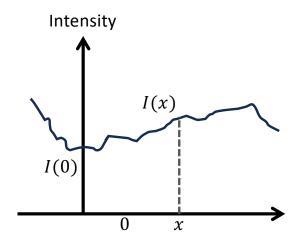
$$I(x) = I(0) + xI'(0) + \frac{x^2}{2!}I''(0) + \frac{x^3}{3!}I'''(0) + \dots + \frac{x^n}{n!}I^{(n)} + R_{n+1}(x)$$

The residual $R_{n+1}(x)$ satisfies:

$$\lim_{x\to 0}R_{n+1}(x)=0$$

Image rows (or columns) as 2D graphs

Polynomial approximation

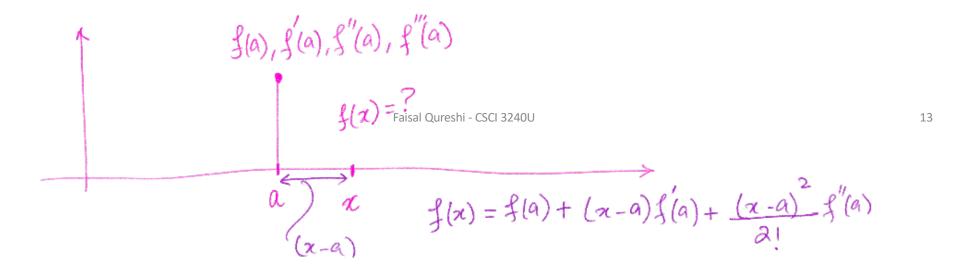


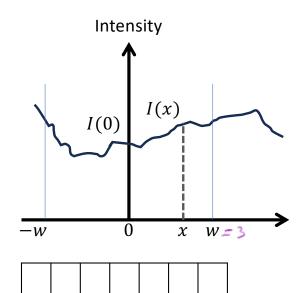
Taylor series expansion of I(x) near the "patch" center 0

$$I(x) = I(0) + xI'(0) + \frac{x^2}{2!}I''(0) + \frac{x^3}{3!}I'''(0) + \dots + \frac{x^n}{n!}I^{(n)} + R_{n+1}(x)$$

Nth order approximation

For a given x, approximation depends on (n + 1) constants corresponding to the intensity derivative at the patch origin.

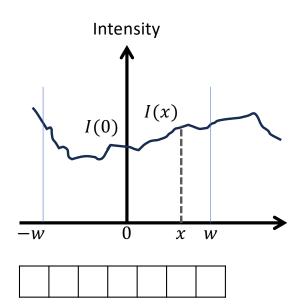




Taylor series expansion of I(x) near the patch center 0

$$I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)$$

Re-write in matrix form



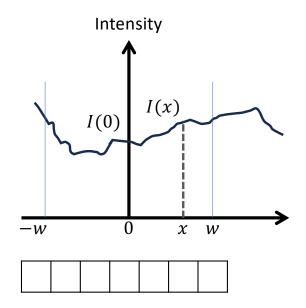
Taylor series expansion of I(x) near the patch center 0

$$I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0) + \dots$$

Re-write in matrix form

$$I(x) \approx \begin{bmatrix} 1 & x & \frac{1}{2}x^2 & \frac{1}{6}x^3 & \dots & \frac{1}{n!}x^n \end{bmatrix} \begin{bmatrix} I(0) \\ I'(0) \\ I''(0) \\ I'''(0) \\ \vdots \\ I^{(n)} \end{bmatrix}$$

For notational simplicity, lets refer the vector of intensity and its derivatives as **d**

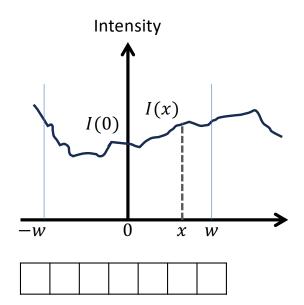


Taylor series expansion of I(x) near the patch center 0

$$I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)$$

Example

Show the 0th order approximation



Taylor series expansion of I(x) near the patch center 0

$$I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)$$

Practice Question

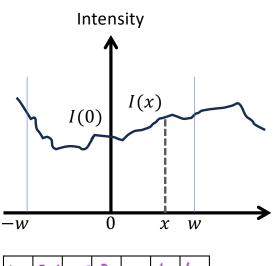
Show the 1st and 2nd order approximations

$$I(\alpha) = [1 \ n] \begin{bmatrix} I(0) \\ I'(0) \end{bmatrix}$$
 1st - order

$$I(x) = \begin{bmatrix} 1 & x & x/2 \end{bmatrix} \begin{bmatrix} I(0) \\ I'(0) \end{bmatrix} \quad \text{and-order}$$

$$I(x) = \begin{bmatrix} 1 & x & x/2 \end{bmatrix} \begin{bmatrix} I'(0) \\ I''(0) \end{bmatrix}$$

Fit a polynomial of degree n to the patch intensities



$$I(x) = I(0) + \chi I'(0) + \frac{\chi^2}{2} I''(0)$$

$$I(-3) = I(0) + (-3)I(0) + \frac{9}{2}I'(0) = 4$$

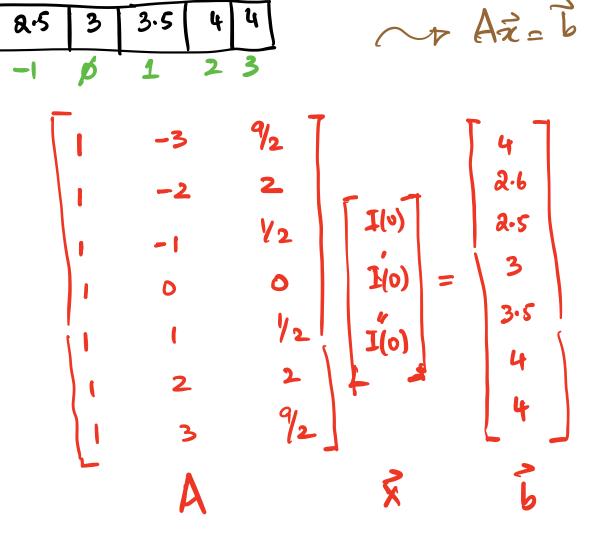
$$I(-2) = I(0) + (-1)I(0) + 2I'(0) = 2.6$$

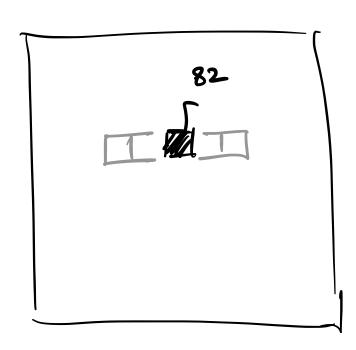
$$I(-1) = I(0) + (-1)I(0) + \frac{1}{2}I''(0) = 2.5$$

$$I(0) = I(0) = 3$$

$$I(1) = I(0) + (1)I'(0) + \frac{1}{2}I''(0) = 3.5$$

Faisal Qureshi - CSCI 3240U

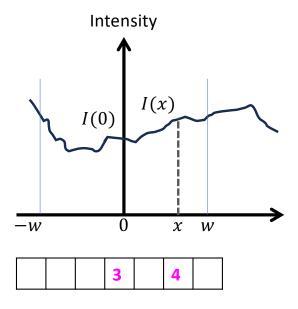




4

2.6

Fit a polynomial of degree n to the patch intensities

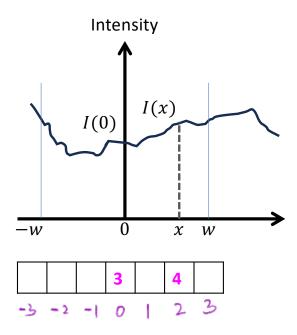


Fitting a polynomial of degree 2

Use second-order Taylor series expansion

$$I(x) = I(0) + xI'(0) + \frac{1}{2}x^2I''(0)$$

Fit a polynomial of degree n to the patch intensities



Fitting a polynomial of degree 2

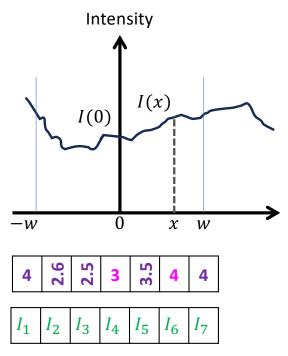
Use second-order Taylor series expansion

$$I(x) = I(0) + xI'(0) + \frac{1}{2}x^2I''(0)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Unknowns

I

Fit a polynomial of degree n to the patch intensities



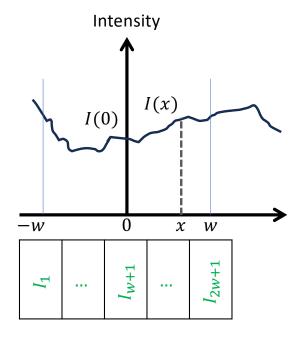
For convenience, we refer to patch intensities as I_x where $x \in [1,2w+1]$. Then I_{w+1} refers to the intensity at patch center.

Fitting a polynomial of degree 2

Use second-order Taylor series expansion

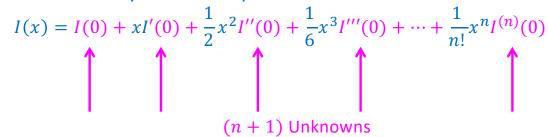
$$I(x) = I(0) + xI'(0) + \frac{1}{2}x^2I''(0)$$

Fit a polynomial of degree n to the patch intensities



Fitting a polynomial of degree n

Use nth order Taylor series expansion



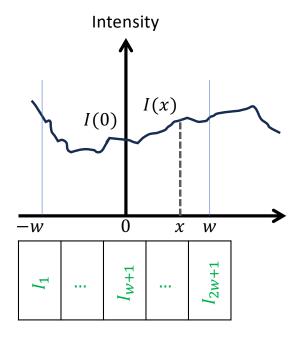
Observation

A (2w + 1)-patch gives 2w + 1 equations.

Conclusion

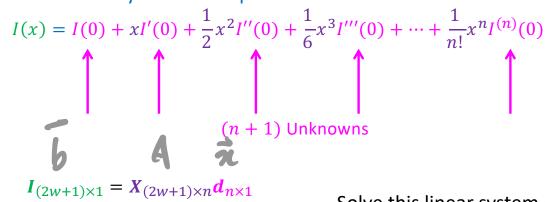
For a patch of size (2w + 1), it is only possible to fit a polynomial of degree 2w.

Fit a polynomial of degree n to the patch intensities



Fitting a polynomial of degree n

Use nth order Taylor series expansion



Positions (known)

(unknown)

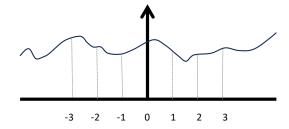
Solve this linear system of equations in terms of *d* minimizes the fit error.

$$||I - Xd||^2$$

Solution **d** is called the *least squares fit*

(known)

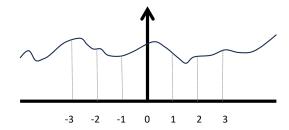
Oth order estimation (constant) of I(x)



System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} [d_0]$$

Oth order estimation (constant) of I(x)



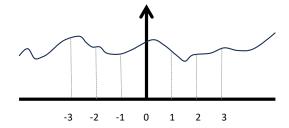
System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} [d_0]$$

Solution is the mean intensity of the patch

Provides the estimate of intensity of the center of the patch

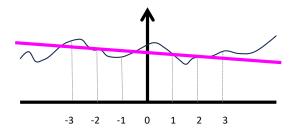
1st order estimation (linear) of I(x)



System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \end{bmatrix}$$

1st order estimation (linear) of I(x)



System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \end{bmatrix}$$

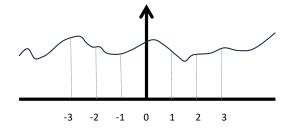
Solution minimizes the sum of vertical distance between the line and the image intensities.

Provides the estimate of intensity and its derivative at the patch center

Matrix representation of a line (in 2D)

$$y = b + mx = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix}$$

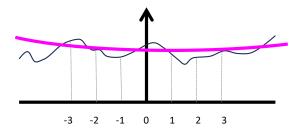
2nd order estimation (quadratic) of I(x)



System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 & \frac{9}{2} \\ 1 & -2 & 2 \\ 1 & -1 & \frac{1}{2} \\ 1 & 0 & 0 \\ 1 & 1 & \frac{1}{2} \\ 1 & 2 & 2 \\ 1 & 3 & \frac{9}{2} \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \\ d_2 \end{bmatrix}$$

2nd order estimation (quadratic) of I(x)



System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 9/2 \\ 1 & -2 & 2 \\ 1 & -1 & 1/2 \\ 1 & 0 & 0 \\ 1 & 1 & 1/2 \\ 1 & 2 & 2 \\ 1 & 3 & 9/2 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \\ d_2 \end{bmatrix}$$

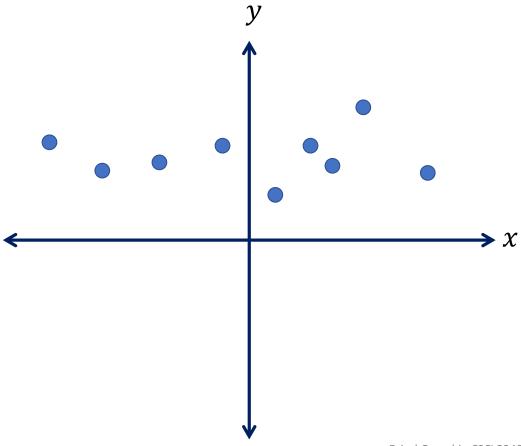
Solution fits a parabola/hyperbola/ellipse to patch intensities

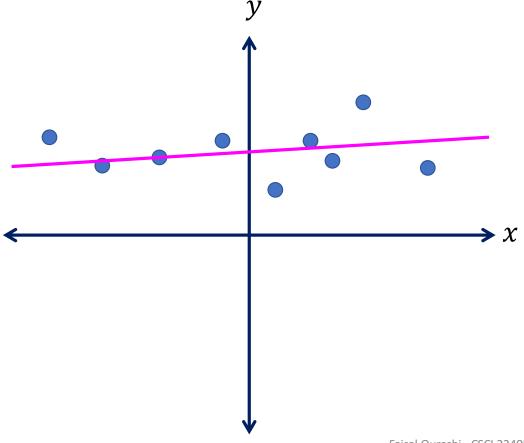
Provides the estimate of intensity and its first and second derivatives at the patch center

Matrix representation of second order polynomials

$$y = ax^{2} + bx + c = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x^{2} \\ x \\ 1 \end{bmatrix} = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

Faisal Qureshi - CSCI 3240U





Least squares fitting often use the following notation to represent the system of linear equations

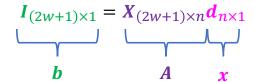
$$Ax = b$$

The solution is

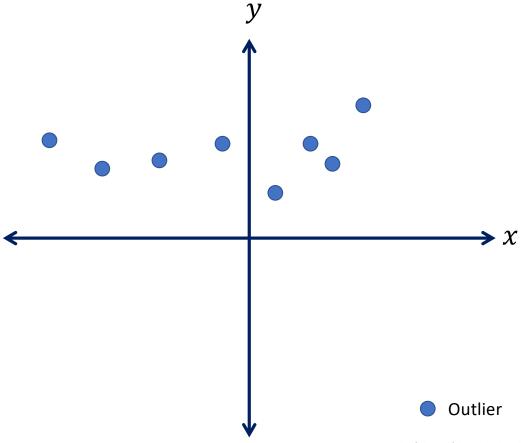
$$x = A^{-1}b$$

where A^{-1} is inverse (or pseudoinverse) of A.

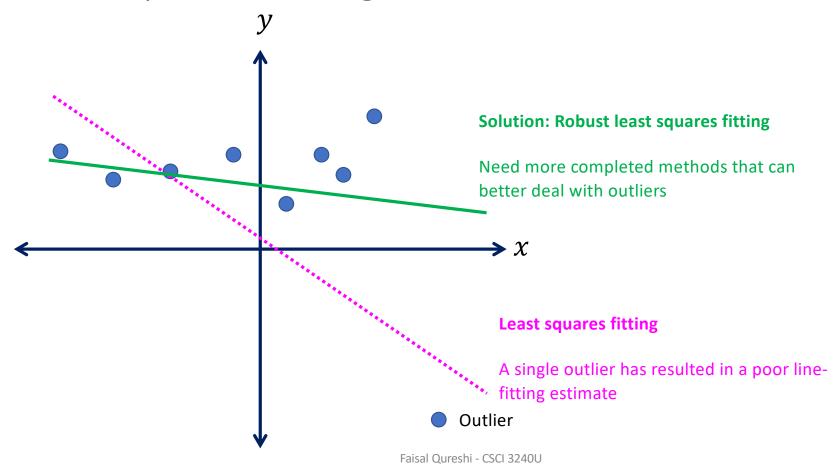
Recall that we need to solve the following system of linear equations when approximating patches with polynomials.



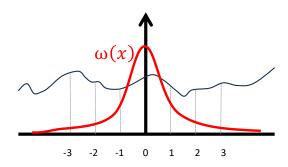
Faisal Qureshi - CSCI 3240U



Faisal Qureshi - CSCI 3240U



Weighted least squares estimate of I(x)



Give more weight to the pixels near center and less weight to pixels that are far from center,

e.g.,
$$\omega(x) = e^{-x^2}$$

Bias our estimate of I'(0) towards the center of the patch.

For patch

The system of linear equations becomes

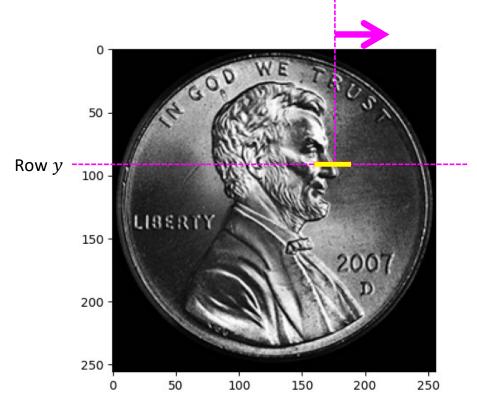
$$\begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} \mathbf{I}_{(2w+1)\times 1} = \begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} \mathbf{X}_{(2w+1)\times n} \mathbf{d}_{n\times 1}$$

and the solution **d** minimizes the norm:

$$\begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} (I - Xd) \Big\|^2$$

Estimating image derivatives

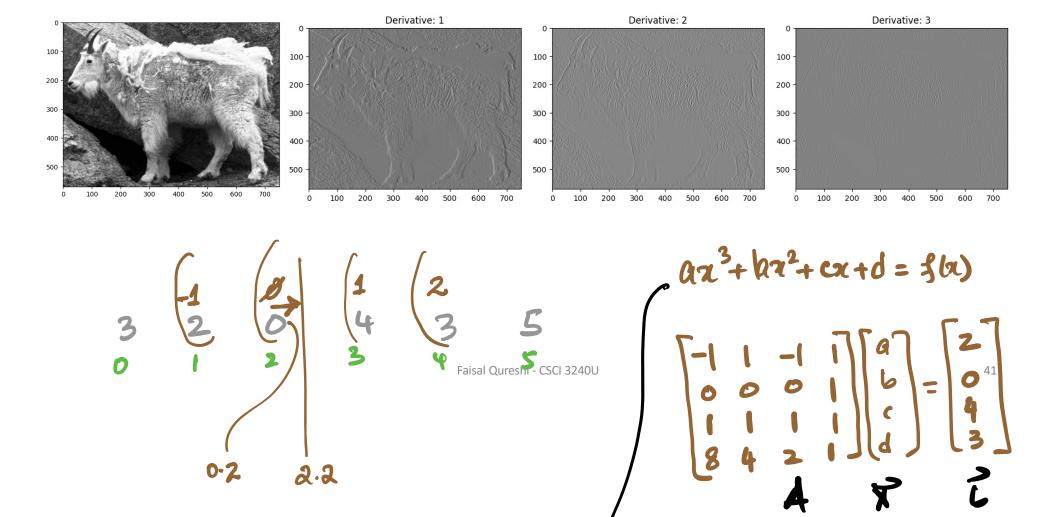
- For each row y, define a window of width 2w + 1 at pixel (i.e., column) x
 - Fit a polynomial (usually of degree 1 or 2)
 - Assign the fitted polynomial's derivates at location 0 (i.e., center of the patch, or column y in the image space)
 - Slide the window one over, until the end of the row

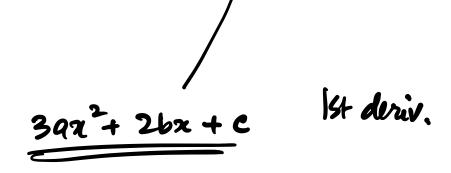


Column x

Image derivatives

Fitting a 3rd-order Taylor series using a 5-pixel patch





Summary

- 1D image patches
- Approximating 1D image patches via polynomials
- Computing image derivatives via fitting polynomials
- Least squares solution to a system of linear equations
- Weighted least squares