Image Gradients
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Today’s lecture

* Why do we care about image gradients?
 Computing image gradients

* Sobel filters

* Gradient magnitude and directions

* Visualizing image gradients



Derivative:

f(x)

af

dx

= lim
e—0

fx+e)—f(x)
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df

d*f

dx?
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af f(x+e)—f(x)

Derivative: — = lim
ax e—0 €
f(x)

TTH[ TTTMT

Finite-difference approximation

df _AF _fG+D - f()
dx  Ax  (x+1)—x

=f(x+1) - f(x)
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Use finite difference approximation to compute
image derivatives

df A fx+D—f@

dx  Ax  (x+1)—x =+ 1) = f()
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Use finite difference approximation to compute
image derivatives

df Af foAD-f00)
dx  Ax  (x+1)—x =+ 1) = f()
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Partial derivatives £ y)
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x,7)
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How to compute image derivatives?

* Option 1: reconstruct a continuous function f(x, y), then compute partial
derivatives as

0f(s.y) _ . fle+ey) - fzy)
8.’]3 _e—>0 €

0f(z,y) _ . f@y+9—f(z.)
ay _e—>0 €



How to compute image derivatives?

* Option 2: use finite differences to take a discrete derivative as

8f($7y) f[x+1,y]—f[a7,y]

~~/
-/

ox 1
of(z,y) _ flr,y+1] — flz,y]
oy 1

* We can achieve this using convolution

A= B Hyzg




Image derivatives in x and y directions

Image
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Derivative along x

Derivative along y

fy — f * [1r—1]T —
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Image gradient:

af (x,y) 0f(x,y)
v/ = [ " oy

ol sl-1l-7 What is gradient at pixel location (0,2)? (—=1,—-1)
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* The gradient of an image Vf points to the direction of most rapid change

In intensity
(ol A
o] k

Vf= Or@

Image Gradient: Vf = [

 Gradient magnitude: ||Vf]|| = \/(%)2 T (Z_fz)z

a1 ;01
» Gradient direction: 8 = tan™! ( )
oy’ 0x
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Gradient direction and magnitude




Partial Derivative of an Image

f Hy * f

Hy*f
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Partial Derivative of an Image
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Partial Derivatives of an Image




Filters for computing image derivatives

Finite Difference Filters

1|0]-1 1|2
Sobel Hy=|2]|0]-2 H,=|0|0
1/0|-1 1] -2

Prewire H,=11]10]-1 H,=[0]0

Roberts H, = _ H, =
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Image noise and gradients
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Effects of Noise

* Gradient is highly sensitive to noise

* Difference filters (that we can use for gradient computation) respond
strongly to noise

* The larger the noise, the stronger the response

* How to handle it?
* Smooth first. Get rid of high-frequency component.



f*g

d
d—x(f*g)

Sigma = 50

. kernel
Convolution

Differentiation
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Differentiation via Convolution

o . d d
Convolution is associative: E(f xg)=f x4

Sigma = 50
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Derivative of Gaussian filter
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Image noise and gradients

Signal smoothed with Gaussian

Derivative of smoothed signal
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Edge Detection

* |dentify sudden changes (discontinuities) in an image

* Most semantic and shape information seen in an image i
can be encoded using the edges *

* Edges are more compact than pixels

An artist’s line drawing
[Source: D. Lowe]



Origin of Edges

* Edges are caused by

surface normal discontinuity

e depth discontinuity
-
\L_________;___,/
surface color discontinuity
-
\""--._______._.--""/ ilumination discontinuity
.-

[Source: Steve Seitz]



What causes edges?

Reflectance change:
appearance

information, texture

Change in surface
orientation: shape

[Source: K. Grauman]

Depth discontinuity:
object boundary

Cast shadows
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Why edge detection?

e Extract information
* Recognize objects
e Understand scene

e Reconstruct 3D from images

* Recover viewpoint
and geometry

* Vertical vanishing
point
(at infinity)
Vanishing
line

Vanishing
point
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[Source: Steve Seitz]



[Source: Steve SeitZ]
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[Source: Steve SeitZ]



Characterizing Edges

* An edge is a place of rapid change in intensity

[Source: S. Lazebnik]

image

intensity function
(along horizontal scanline)

first derivative

\

edges correspond to
extrema of derivative



Ssummary

* Image gradients

* Finite-difference approximation filters
e Gradient magnitude and direction

* Image noise and gradients

* Edges and their importance
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