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Today’s lecture

• Why do we care about image gradients?

• Computing image gradients

• Sobel filters

• Gradient magnitude and directions

• Visualizing image gradients
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Derivative:      
𝑑𝑓

𝑑𝑥
= lim

𝜖→0

𝑓 𝑥+𝜖 −𝑓(𝑥)

𝜖
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𝑓(𝑥)

𝑥

𝑑𝑓

𝑑𝑥
≈

Δ𝑓

Δ𝑥
=

𝑓 𝑥 + 1 − 𝑓(𝑥)

𝑥 + 1 − 𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥)

Finite-difference approximation

Derivative:      
𝑑𝑓

𝑑𝑥
= lim

𝜖→0

𝑓 𝑥+𝜖 −𝑓(𝑥)

𝜖



Use finite difference approximation to compute 
image derivatives
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Use finite difference approximation to compute 
image derivatives
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0 8 -1 -2 -6 0 ?𝑓′ =

𝑑𝑓

𝑑𝑥
≈

Δ𝑓

Δ𝑥
=

𝑓 𝑥 + 1 − 𝑓(𝑥)

𝑥 + 1 − 𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥)

𝑓 ∗ [1, −1] =



Partial derivatives
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• Option 1: reconstruct a continuous function 𝑓(𝑥, 𝑦), then compute partial 
derivatives as

How to compute image derivatives?
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How to compute image derivatives?
• Option 2: use finite differences to take a discrete derivative as

• We can achieve this using convolution
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Image derivatives in 𝑥 and 𝑦 directions
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Image gradient:  ∇𝑓 =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
,

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
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Image Gradient: ∇𝑓 =
𝜕𝑓

𝜕𝑥
,

𝜕𝑓

𝜕𝑦

• The gradient of an image ∇𝑓 points to the direction of most rapid change 
in intensity

• Gradient magnitude: ∇𝑓 =
𝜕𝑓

𝜕𝑥

2
+

𝜕𝑓

𝜕𝑦

2

• Gradient direction: 𝜃 = tan−1 ൗ
𝜕𝐼

𝜕𝑦

𝜕𝐼

𝜕𝑥
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Gradient direction and magnitude
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Partial Derivative of an Image
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Partial Derivative of an Image
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Partial Derivatives of an Image
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Filters for computing image derivatives
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Image noise and gradients
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Effects of Noise

• Gradient is highly sensitive to noise

• Difference filters (that we can use for gradient computation) respond 
strongly to noise
• The larger the noise, the stronger the response

• How to handle it?
• Smooth first.  Get rid of high-frequency component.
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Peak corresponds to edge



Differentiation via Convolution
• Convolution is associative:  

𝑑

𝑑𝑥
𝑓 ∗ 𝑔 = 𝑓 ∗

𝑑

𝑑𝑥
𝑔
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f

We saved one 
convolutional operation



Derivative of Gaussian filter

∗ 1, −1  =
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Image noise and gradients
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Edge Detection



Edge Detection

• Identify sudden changes (discontinuities) in an image

• Most semantic and shape information seen in an image 
can be encoded using the edges

• Edges are more compact than pixels
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[Source: D. Lowe]

An artist’s line drawing



Origin of Edges

• Edges are caused by a variety of factors
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depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

[Source: Steve Seitz]
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What causes edges?

[Source: K. Grauman]



Why edge detection?

• Extract information

• Recognize objects

• Understand scene

• Reconstruct 3D from images
• Recover viewpoint

and geometry
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[Source: Steve Seitz]



[Source: Steve Seitz]



[Source: Steve Seitz]



Characterizing Edges

• An edge is a place of rapid change in intensity

image first derivative

edges correspond to

extrema of derivative
[Source: S. Lazebnik] 35

intensity function

(along horizontal scanline)



Summary

• Image gradients

• Finite-difference approximation filters

• Gradient magnitude and direction

• Image noise and gradients

• Edges and their importance
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