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Today’s lecture

• Why do we care about image gradients?
• Computing image gradients
• Sobel filters
• Gradient magnitude and directions
• Visualizing image gradients
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Derivative:      𝑑𝑓
𝑑𝑥
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Finite-difference approximation

Derivative:      𝑑𝑓
𝑑𝑥

= lim
𝜖→0
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𝜖
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Use finite difference approximation to compute 
image derivatives
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Use finite difference approximation to compute 
image derivatives
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Partial derivatives
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• Option 1: reconstruct a continuous function 𝑓(𝑥, 𝑦), then compute partial 
derivatives as

How to compute image derivatives?
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How to compute image derivatives?
• Option 2: use finite differences to take a discrete derivative as

• We can achieve this using convolution
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Image derivatives in 𝑥 and 𝑦 directions
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Image gradient:  ∇𝑓 = 𝜕𝑓(𝑥,𝑦)
𝜕𝑥

, 𝜕𝑓(𝑥,𝑦)
𝜕𝑦
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Image Gradient: ∇𝑓 = 𝜕𝑓
𝜕𝑥

, 𝜕𝑓
𝜕𝑦

• The gradient of an image ∇𝑓 points to the direction of most rapid change 
in intensity

• Gradient magnitude: ∇𝑓 = 𝜕𝑓
𝜕𝑥
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• Gradient direction: 𝜃 = tan−1 ൗ𝜕𝐼
𝜕𝑦

𝜕𝐼
𝜕𝑥
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Gradient direction and magnitude
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Partial Derivative of an Image
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Partial Derivative of an Image
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Partial Derivatives of an Image
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Filters for computing image derivatives
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Image noise and gradients
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Effects of Noise
• Gradient is highly sensitive to noise
• Difference filters (that we can use for gradient computation) respond 

strongly to noise
• The larger the noise, the stronger the response

• How to handle it?
• Smooth first.  Get rid of high-frequency component.
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Differentiation via Convolution
• Convolution is associative:  𝑑

𝑑𝑥
𝑓 ∗ 𝑔 = 𝑓 ∗ 𝑑

𝑑𝑥
𝑔
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Derivative of Gaussian filter

∗ 1, −1  =
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Image noise and gradients
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Edge Detection



Edge Detection

• Identify sudden changes (discontinuities) in an image
• Most semantic and shape information seen in an image 

can be encoded using the edges
• Edges are more compact than pixels
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An artist’s line drawing



Origin of Edges

• Edges are caused by a variety of factors
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[Source: Steve Seitz]
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What causes edges?

[Source: K. Grauman]



Why edge detection?

• Extract information
• Recognize objects
• Understand scene
• Reconstruct 3D from images

• Recover viewpoint
and geometry
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[Source: Steve Seitz]



[Source: Steve Seitz]



[Source: Steve Seitz]



Characterizing Edges

• An edge is a place of rapid change in intensity

image first derivative

edges correspond to
extrema of derivative[Source: S. Lazebnik] 35

intensity function
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Summary

• Image gradients
• Finite-difference approximation filters
• Gradient magnitude and direction
• Image noise and gradients
• Edges and their importance
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