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Today’s lecture

* Why do we care about image gradients?
* Computing image gradients

* Sobel filters

* Gradient magnitude and directions

* Visualizing image gradients
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Finite-difference approximation
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Use finite difference approximation to compute
image derivatives
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Use finite difference approximation to compute
image derivatives
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How to compute image derivatives?

* Option 1: reconstruct a continuous function f (x,y), then compute partial
derivatives as
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How to compute image derivatives?

* Option 2: use finite differences to take a discrete derivativeas  p &
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Image derivatives in x and y directions
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Image gradient: Vf = [aféi’y),afg;y)]
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* The gradient of an image Vf points to the direction of most rapid change

In intensity
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* Gradient magnitude: ||[Vf]| = \/(%)2 1 (ﬂ)z
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Gradient direction and magnitude (%




Partial Derivative of an Image
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Partial Derivative of an Ima
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Partial Derivatives of an Ima.




Filters for computing image derivatives

Finite Difference Filters
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Image noise and gradients
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Effects of Noise

* Gradient is highly sensitive to noise

* Difference filters (that we can use for gradient computation) respond
strongly to noise

* The larger the noise, the stronger the response

* How to handle it? A/
* Smooth first. Get rid of high-frequency component.
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Differentiation via Convolution
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Convolution is associative: — (fxg) =fx 9
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Derivative of Gaussian filter
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Image noise and gradients

Signal smoothed with Gaussian

Derivative of smoothed signal
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Edge Detection




Edge Detection

* |dentify sudden changes (discontinuities) in an image

* Most semantic and shape information seen in an image
can be encoded using the edges

* Edges are more compact than pixels

An artist’s line drawing

[Source: D. Lowe]
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Origin of Edges

* Edges are caused by

[Source: Steve Seitz]

surface normal discontinuity

depth discontinuity

surface color discontinuity

illumination discontinuity
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What causes edges?

Reflectance change:
appearance

information, texture

Change in surface
orientation: shape

[Source: K. Grauman]

Depth discontinuity:

object boundary

Cast shadows
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Why edge detection?

e Extract information
* Recognize objects
e Understand scene

e Reconstruct 3D from images

* Recover viewpoint
and geometry

‘ Vertical vanishing
point
(at infinity)
Vanishing
line

Vanishing
point
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[Source: Steve SeitZ]
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Characterizing Edges

* An edge is a place of rapid change in intensity

[Source: S. Lazebnik]

image

intensity function
(along horizontal scanline)

first derivative
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edges correspond to
extrema of derivative



Summary

* Image gradients

* Finite-difference approximation filters
* Gradient magnitude and direction

* Image noise and gradients

* Edges and their importance



