

Image Gradients

Computational Photography (CSCI 3240U)

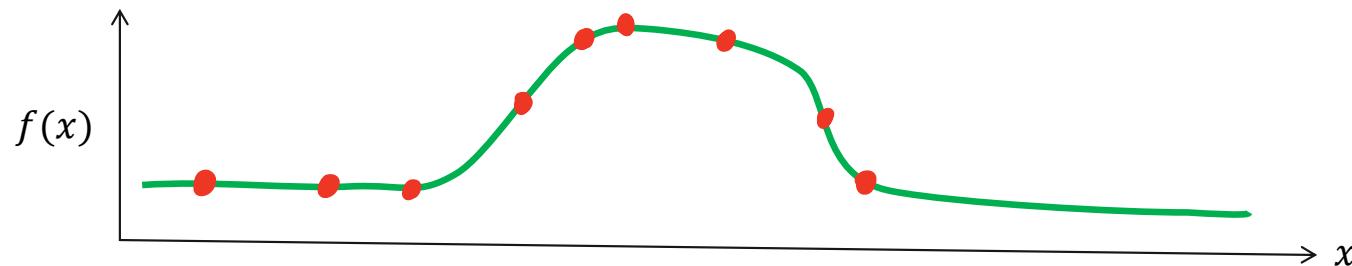
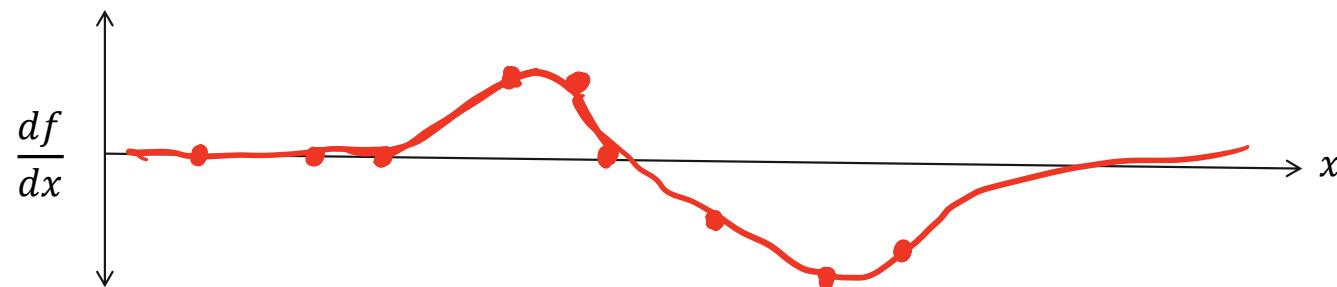
Faisal Z. Qureshi

<http://vclab.science.ontariotechu.ca>

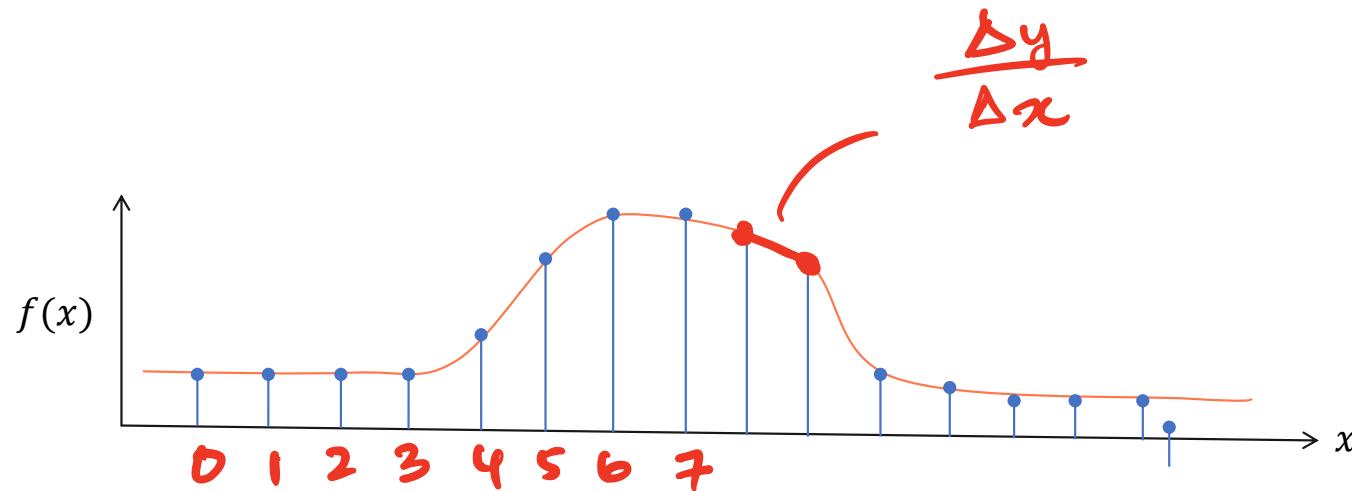
Today's lecture

- Why do we care about image gradients?
- Computing image gradients
- Sobel filters
- Gradient magnitude and directions
- Visualizing image gradients

Derivative: $\frac{df}{dx} = \lim_{\epsilon \rightarrow 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$



Derivative: $\frac{df}{dx} = \lim_{\epsilon \rightarrow 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$



Finite-difference approximation

$$\frac{df}{dx} \approx \frac{\Delta f}{\Delta x} = \frac{f(x+1) - f(x)}{(x+1) - x} = f(x+1) - f(x)$$

 SLOPE

Use finite difference approximation to compute image derivatives

$$\frac{df}{dx} \approx \frac{\Delta f}{\Delta x} = \frac{f(x+1) - f(x)}{(x+1) - x} = f(x+1) - f(x)$$

$$f = \begin{array}{|c|c|c|c|c|c|c|} \hline & \mathbf{1} & \mathbf{1} & \mathbf{9} & \mathbf{8} & \mathbf{6} & \mathbf{0} & \mathbf{0} \\ \hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \end{array}$$

$$f' = \begin{array}{|c|c|c|c|c|c|c|} \hline & \textcolor{red}{0} & \textcolor{red}{8} & \textcolor{red}{-} & & & & \\ \hline \end{array}$$

$$f'' = \begin{array}{|c|c|c|c|c|c|c|} \hline & & & & & & \\ \hline \end{array}$$

Use finite difference approximation to compute image derivatives

$$\frac{df}{dx} \approx \frac{\Delta f}{\Delta x} = \frac{f(x+1) - f(x)}{(x+1) - x} = f(x+1) - f(x)$$

$$f = \begin{array}{ccccccc} 1 & 1 & 9 & 8 & 6 & 0 & 0 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \end{array}$$

$$\begin{bmatrix} -1 & 1 \end{bmatrix}$$

$$f' = \begin{array}{ccccccc} 0 & 8 & -1 & -2 & -6 & 0 & ? \end{array}$$

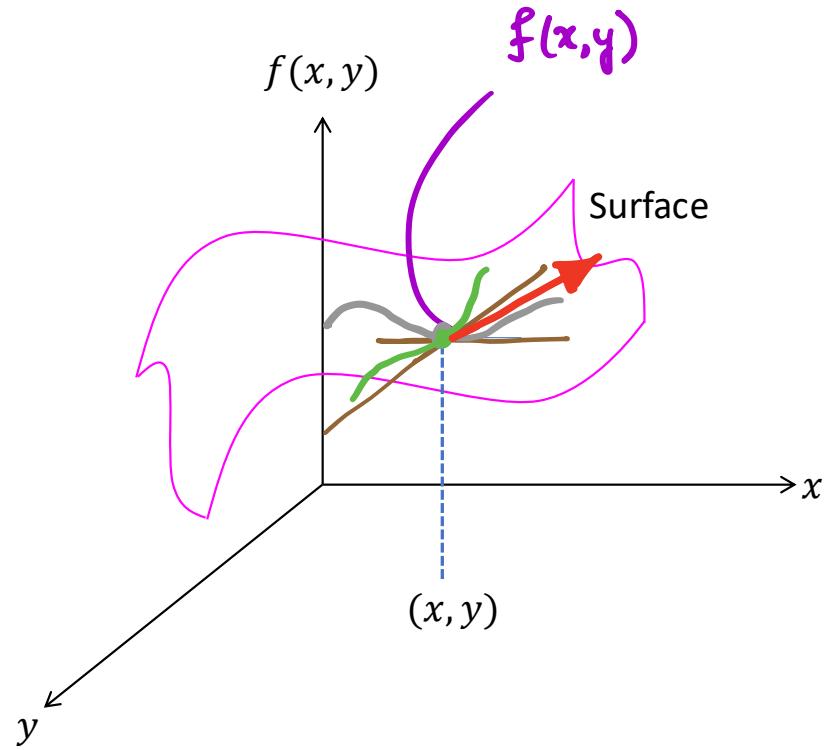
$$f * [1, -1] = \begin{array}{ccccccc} 0 & & & & & & \end{array}$$

convolution (linear filtering)

Partial derivatives

$$\begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

GRADIENT



How to compute image derivatives?

- Option 1: reconstruct a continuous function $f(x, y)$, then compute partial derivatives as

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\epsilon \rightarrow 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

$$\frac{\partial f(x, y)}{\partial y} = \lim_{\epsilon \rightarrow 0} \frac{f(x, y + \epsilon) - f(x, y)}{\epsilon}$$

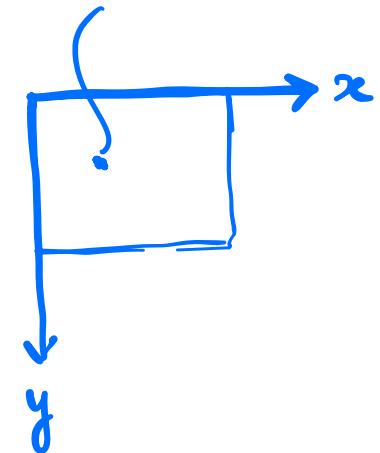
How to compute image derivatives?

- Option 2: use finite differences to take a discrete derivative as

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x + 1, y] - f[x, y]}{1}$$

$$\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}$$

$$\frac{\partial f(x, y)}{\partial y} \approx \frac{f[x, y + 1] - f[x, y]}{1}$$



- We can achieve this using *convolution*

$$H_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$[+1, -1] \quad ①$$

$$H_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad [1 \\ -1] \quad ②$$

Image derivatives in x and y directions

Image

	0	1	2	3	4
0	1	1	9	8	1
1	8	8	8	8	8
2	1	3	5	8	1
3	5	3	2	8	6

$f(x, y) \rightarrow$ Intensity

Pixel Locations

$$\text{GRADIENT}(0,0) = \begin{bmatrix} 0 \\ 7 \end{bmatrix}$$

Derivative along x

$$\frac{\partial f}{\partial x} = f * [1, -1] =$$

Boundary Conditions

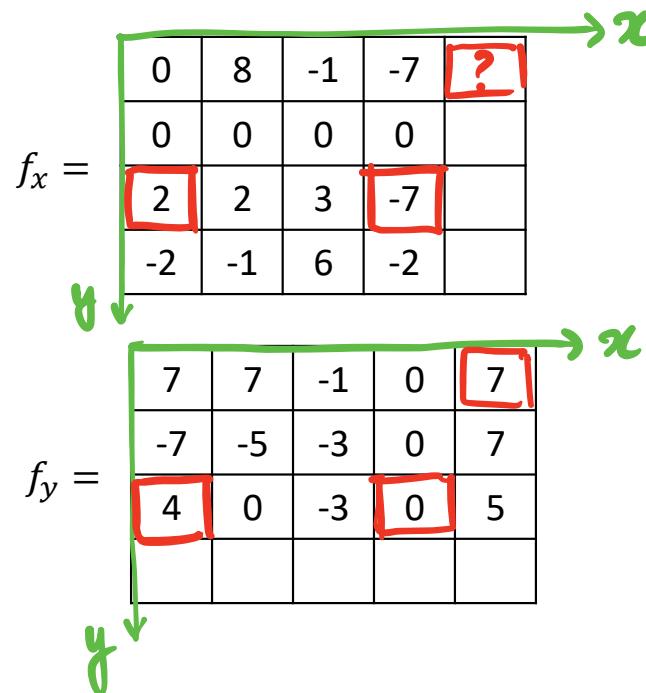
0	8	-1		

Derivative along y

$$\frac{\partial f}{\partial y} = f * [1, -1]^T =$$

7				
-7				
4				
1	1	1	1	1
1	1	1	1	1

Image gradient: $\nabla f = \left[\frac{\partial f(x,y)}{\partial x}, \frac{\partial f(x,y)}{\partial y} \right]$



What is gradient at pixel location (0,2)?

~~(0,1)~~ $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$

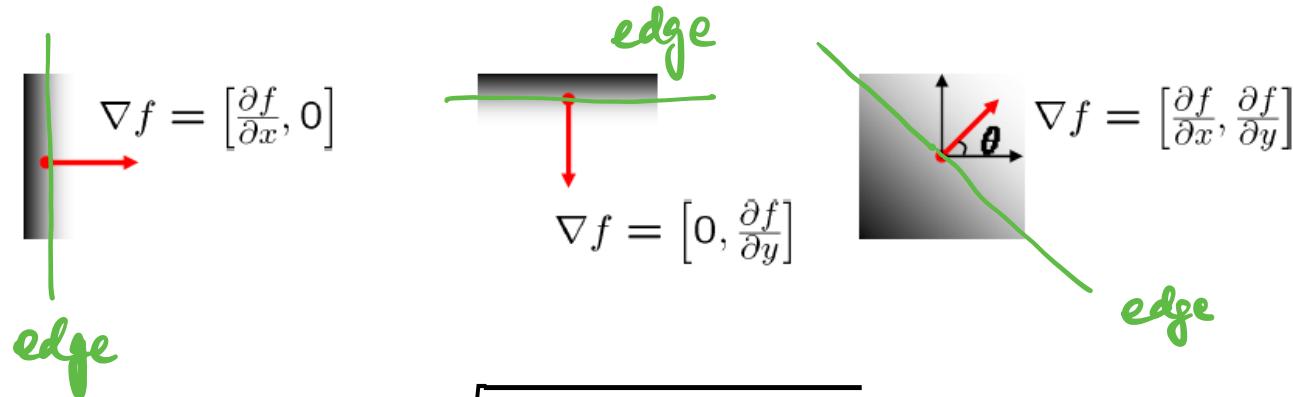
(3,2)? $\begin{bmatrix} -7 \\ 0 \end{bmatrix}$

(4,0)? UNDEFINED

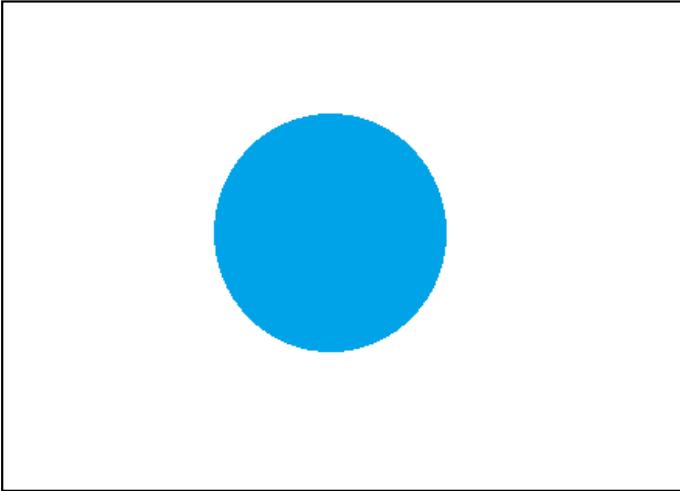
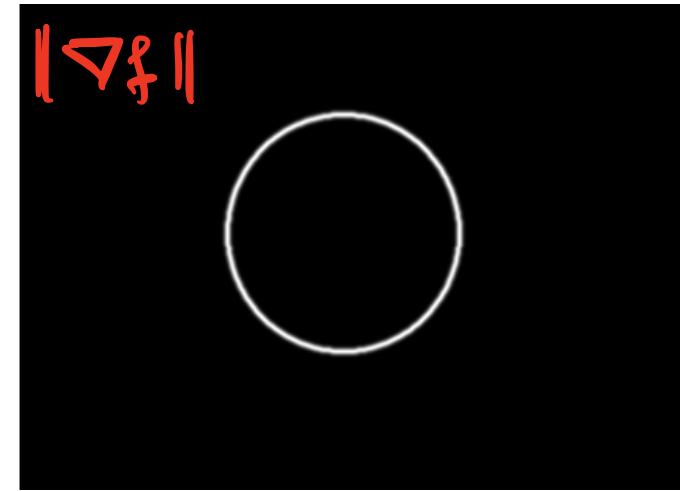
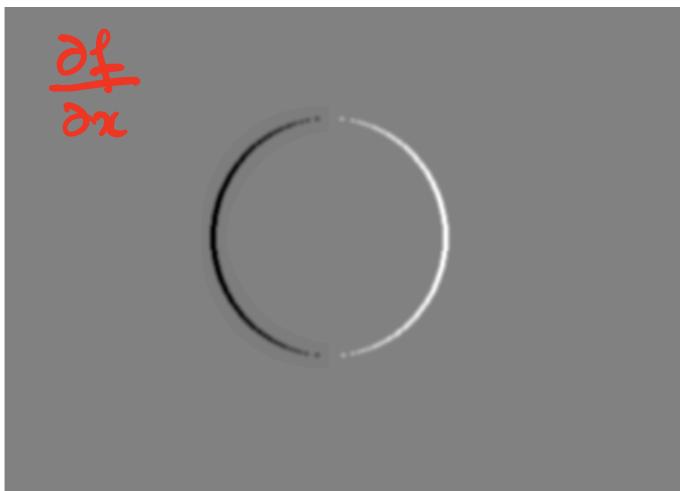
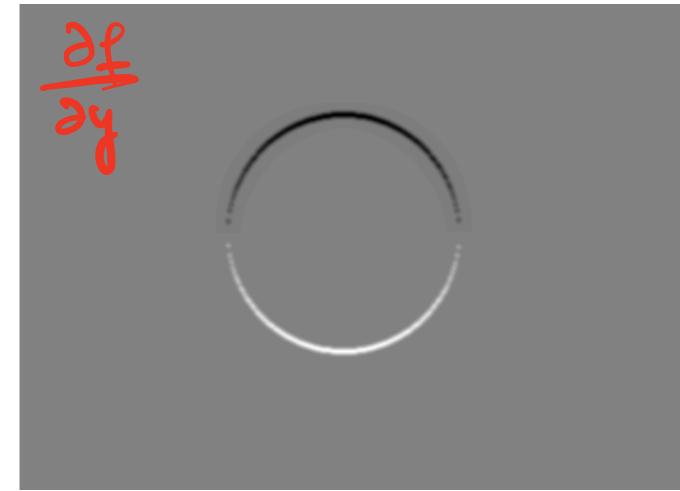
Image Gradient: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

∇ nappa
 Δ delta

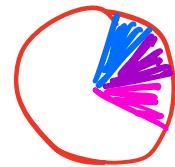
- The gradient of an image ∇f points to the direction of most rapid change in intensity



- Gradient magnitude: $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$
- Gradient direction: $\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$

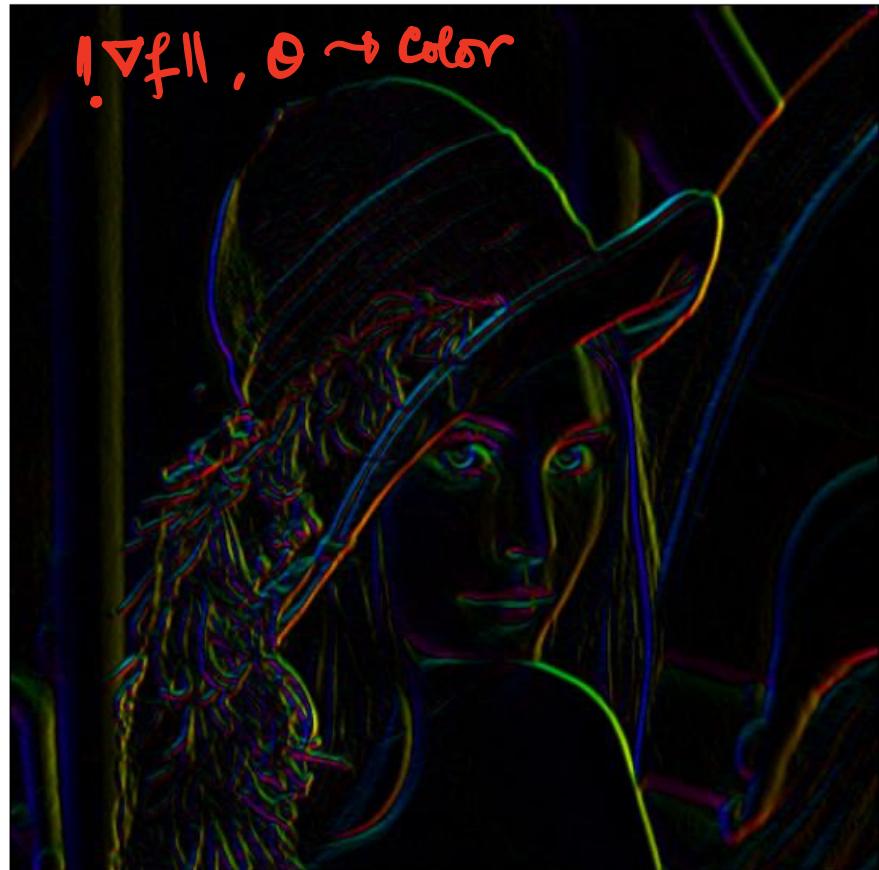


Gradient direction and magnitude

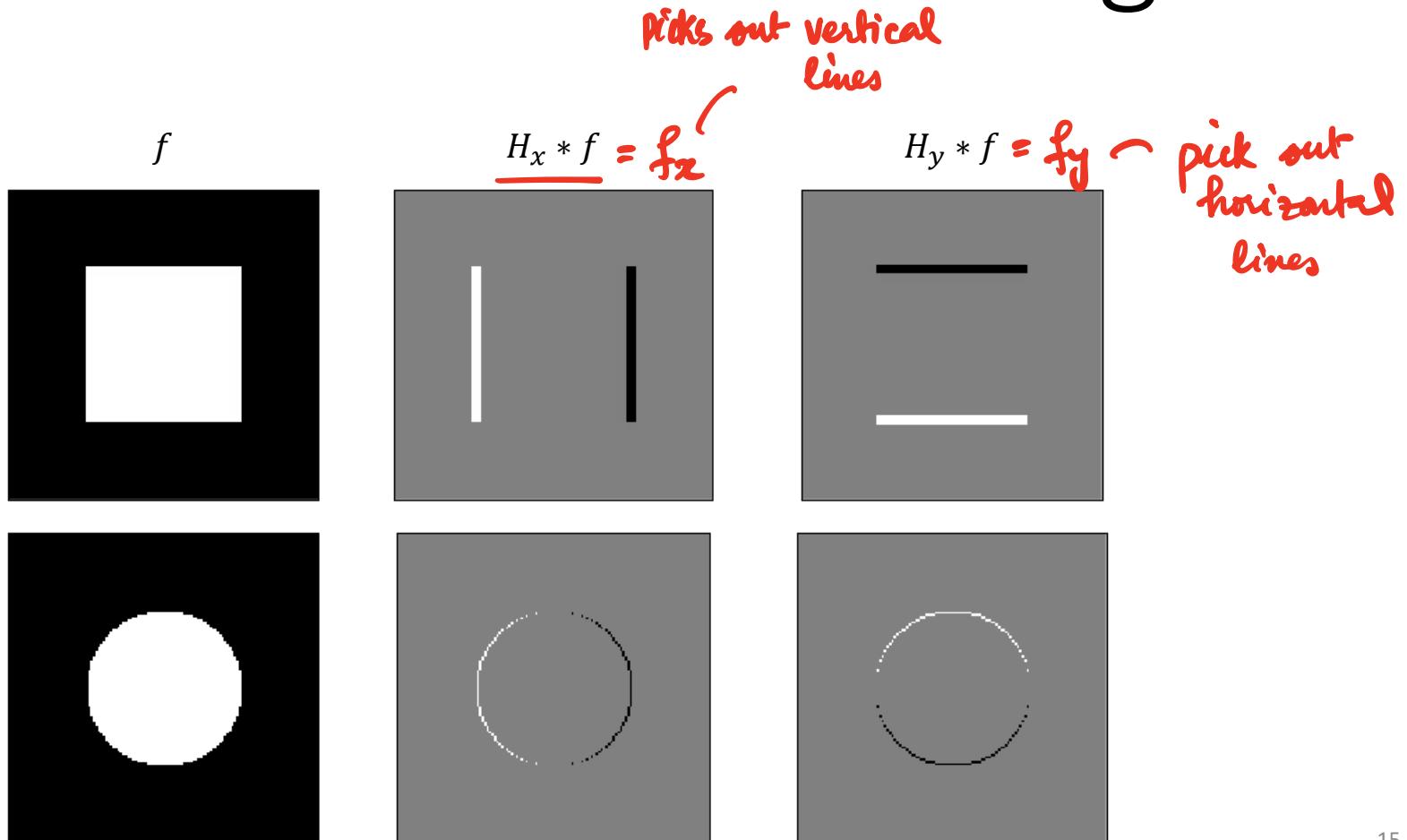


$$\|\nabla I\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

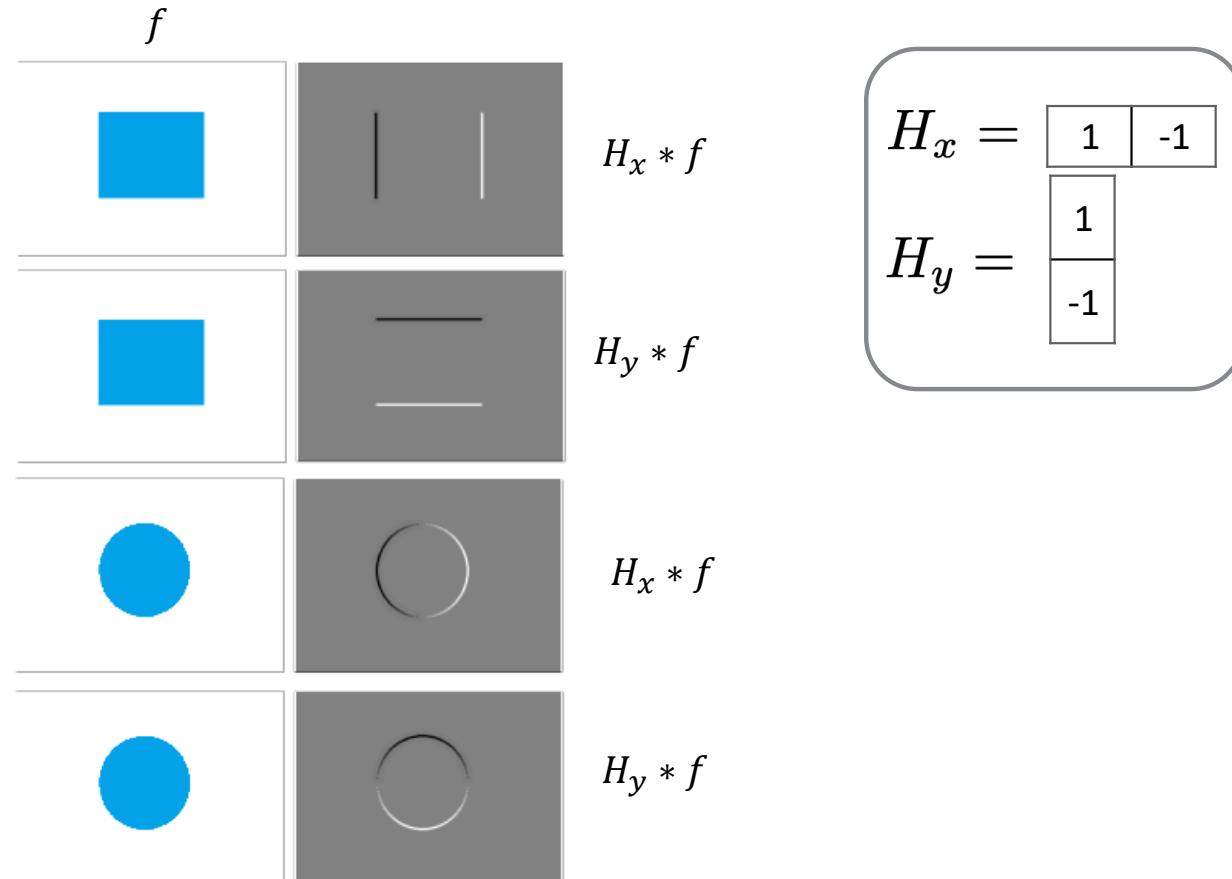
$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$



Partial Derivative of an Image



Partial Derivative of an Image



Partial Derivatives of an Image



Filters for computing image derivatives

Finite Difference Filters

Sobel

$$H_x = \begin{array}{|c|c|c|} \hline 1 & 0 & -1 \\ \hline 2 & 0 & -2 \\ \hline 1 & 0 & -1 \\ \hline \end{array}$$

$$H_y = \begin{array}{|c|c|c|} \hline 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \\ \hline \end{array}$$

Prewire

$$H_x = \begin{array}{|c|c|c|} \hline 1 & 0 & -1 \\ \hline 1 & 0 & -1 \\ \hline 1 & 0 & -1 \\ \hline \end{array}$$

$$H_y = \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -1 & -1 \\ \hline \end{array}$$

Roberts

$$H_x = \begin{array}{|c|c|} \hline 0 & -1 \\ \hline 1 & 0 \\ \hline \end{array}$$

$$H_y = \begin{array}{|c|c|} \hline 1 & 0 \\ \hline 0 & -1 \\ \hline \end{array}$$

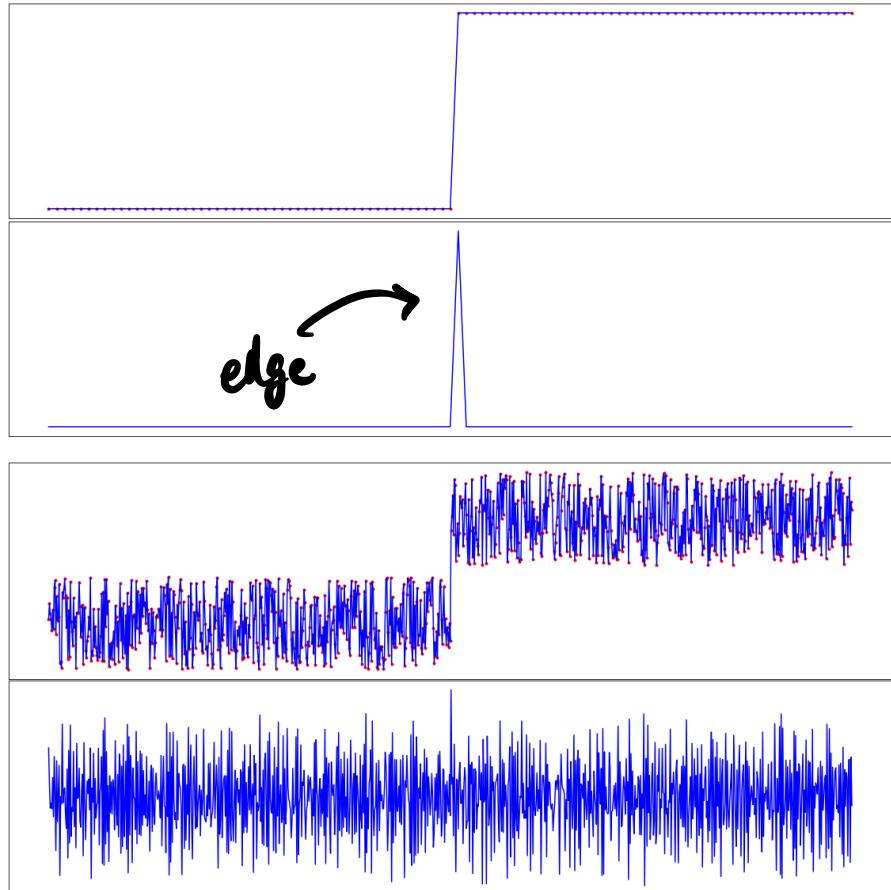
Image noise and gradients

Clean Signal f

$$\frac{df}{dx}$$

Noisy Signal g

$$\frac{dg}{dx}$$



Effects of Noise

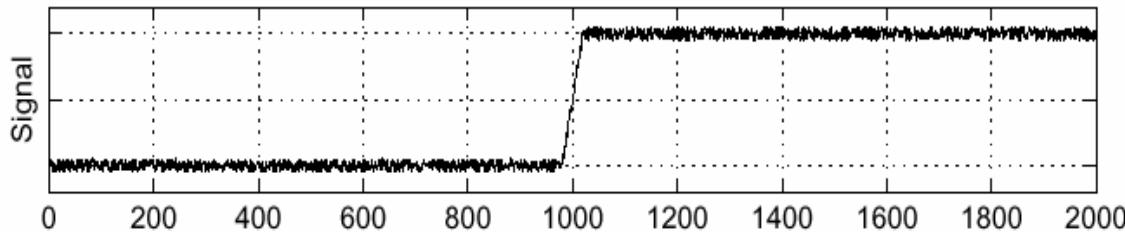
- Gradient is highly sensitive to noise
- Difference filters (that we can use for gradient computation) respond strongly to noise
 - The larger the noise, the stronger the response
- How to handle it?
 - Smooth first. Get rid of high-frequency component.

1. Average

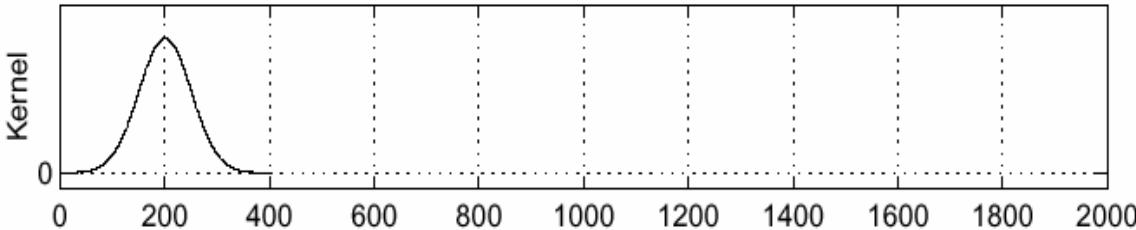
2. Gaussian

Sigma = 50

f

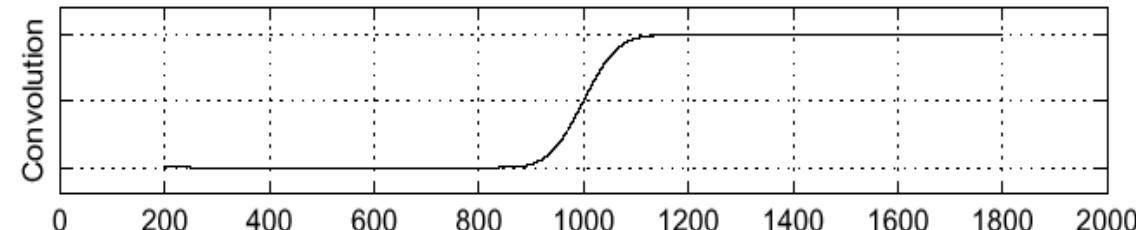


g



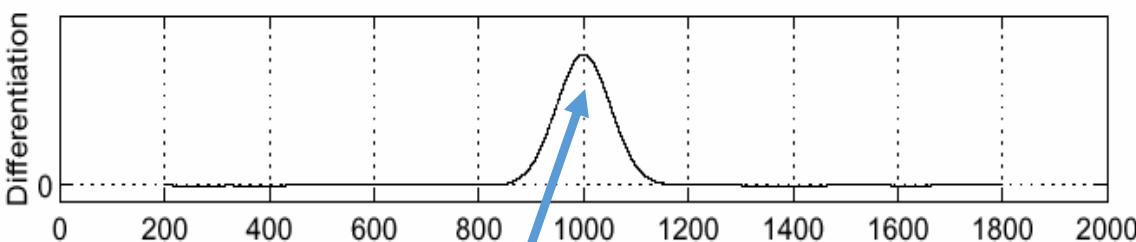
Smoothed
signal

$f * g$



Derivative

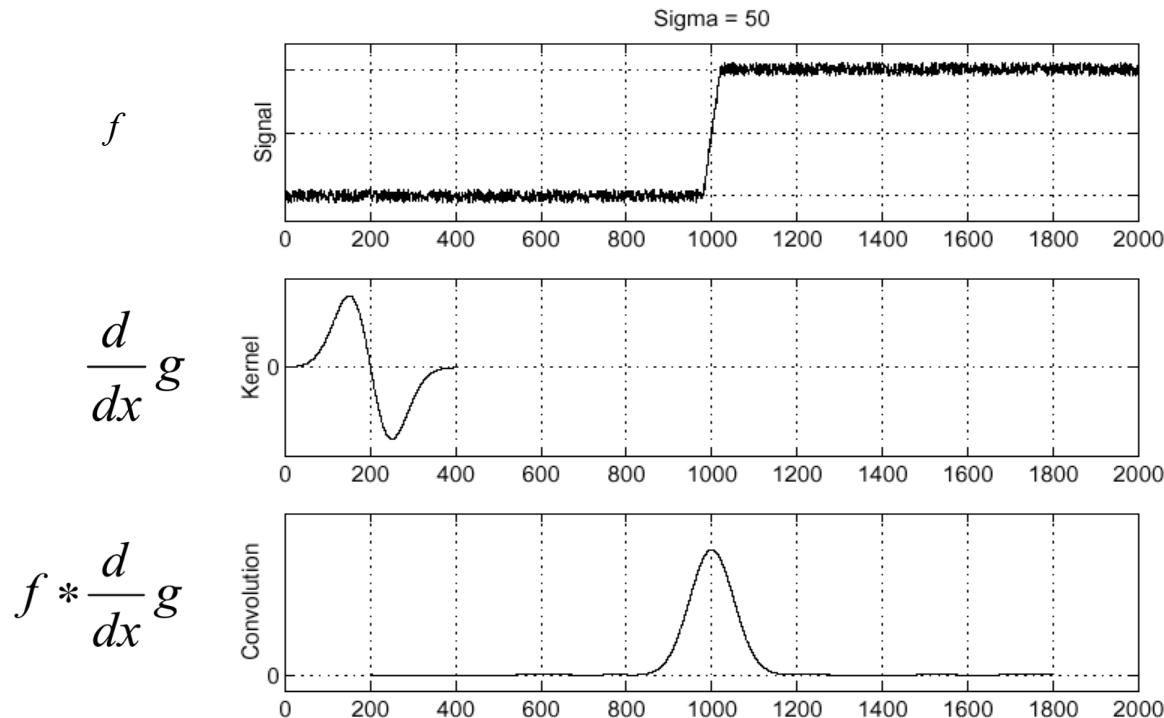
$\frac{d}{dx}(f * g)$



Peak corresponds to edge

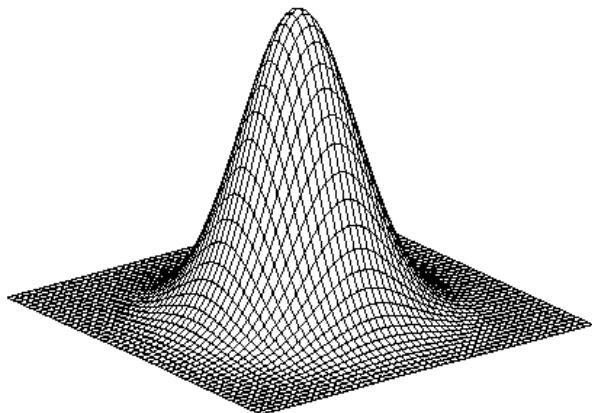
Differentiation via Convolution

- Convolution is associative: $\frac{d}{dx}(f * g) = f * \frac{d}{dx}g$



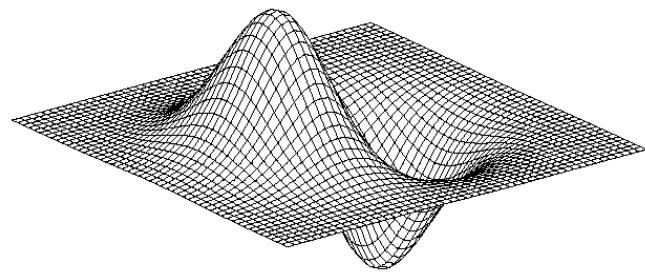
We saved one convolutional operation

Derivative of Gaussian filter



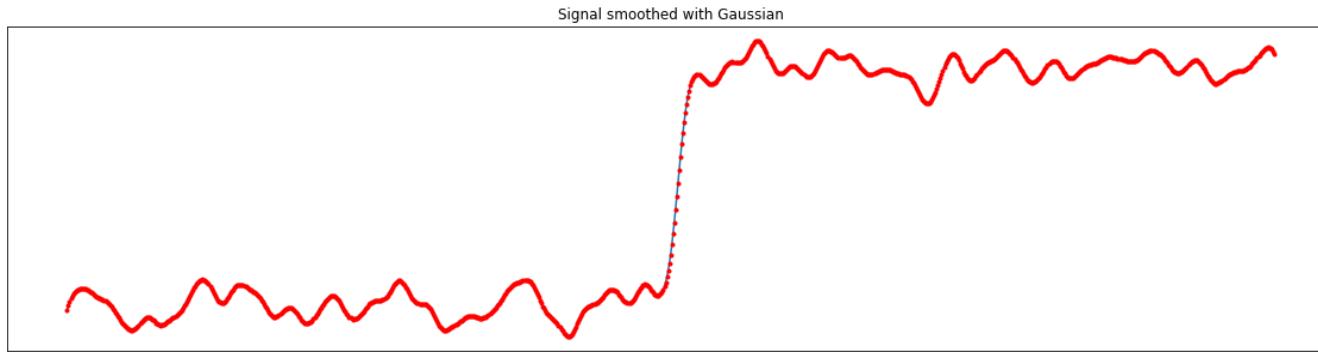
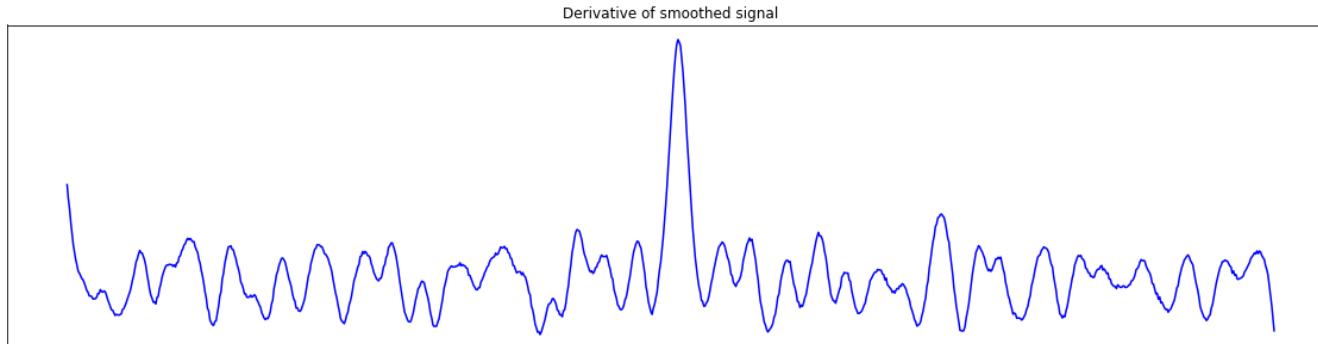
2d

$$* [1, -1] =$$



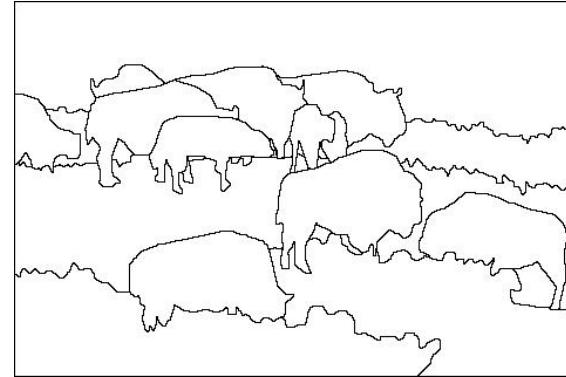
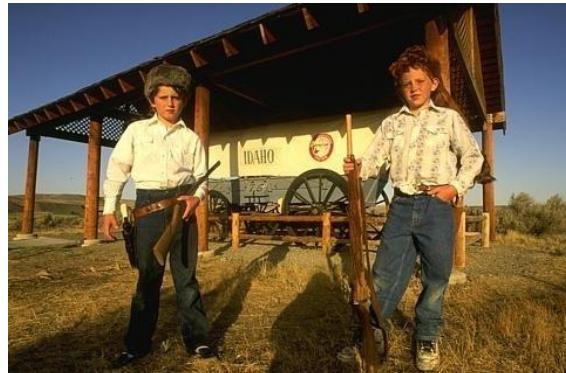
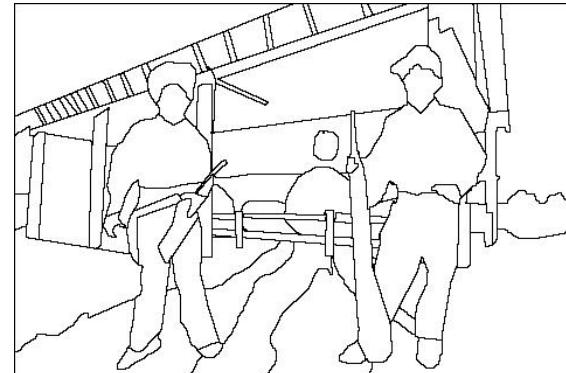
2d

Image noise and gradients





Edge Detection



Edge Detection

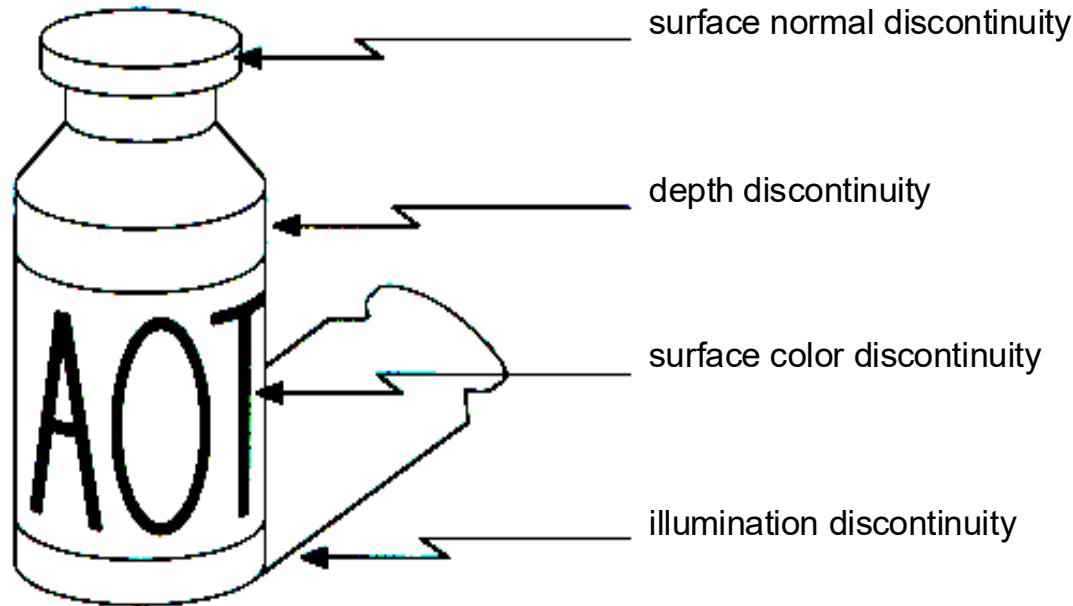
- Identify sudden changes (discontinuities) in an image
- Most semantic and shape information seen in an image can be encoded using the edges
- Edges are more compact than pixels

An artist's line drawing

[Source: D. Lowe]

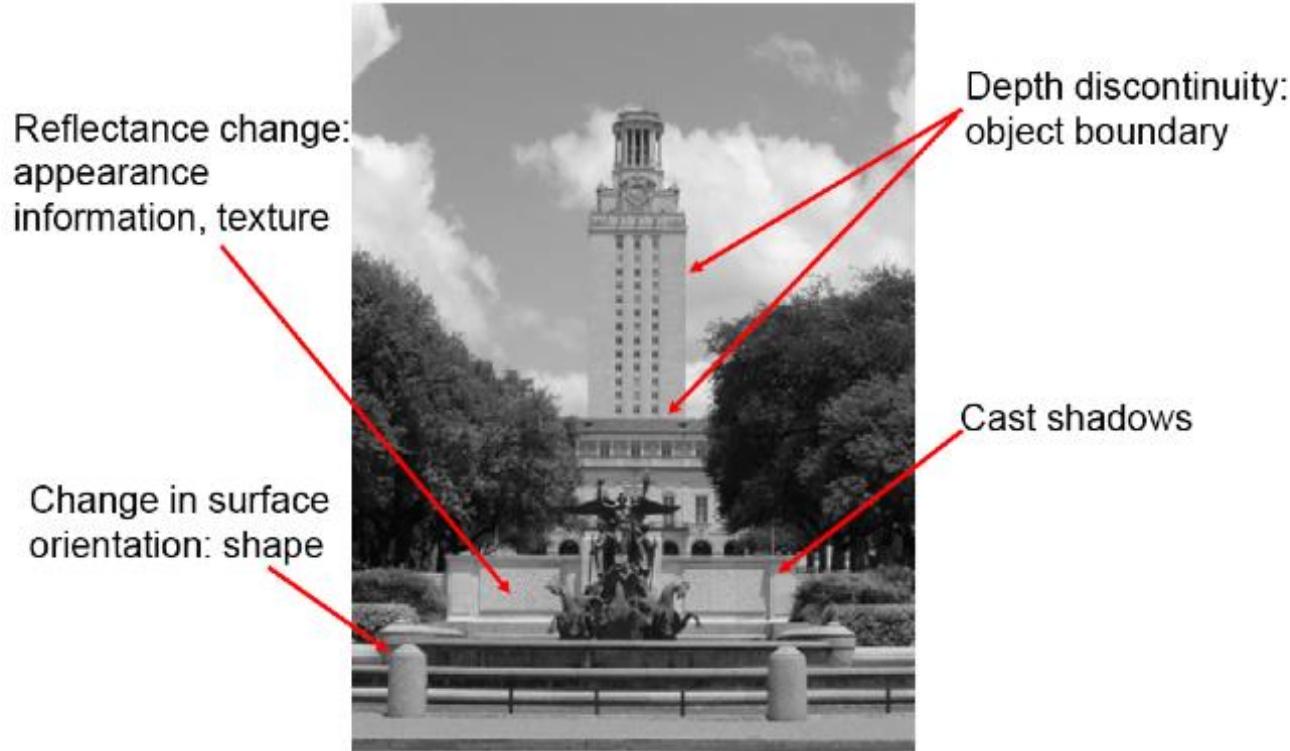
Origin of Edges

- Edges are caused by



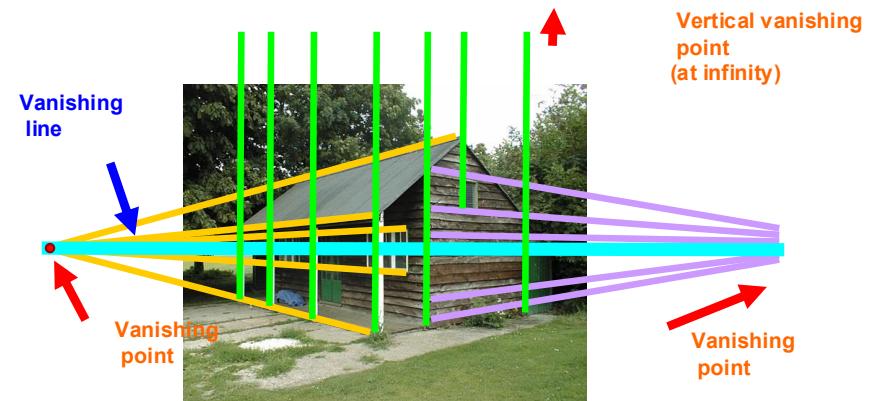
[Source: Steve Seitz]

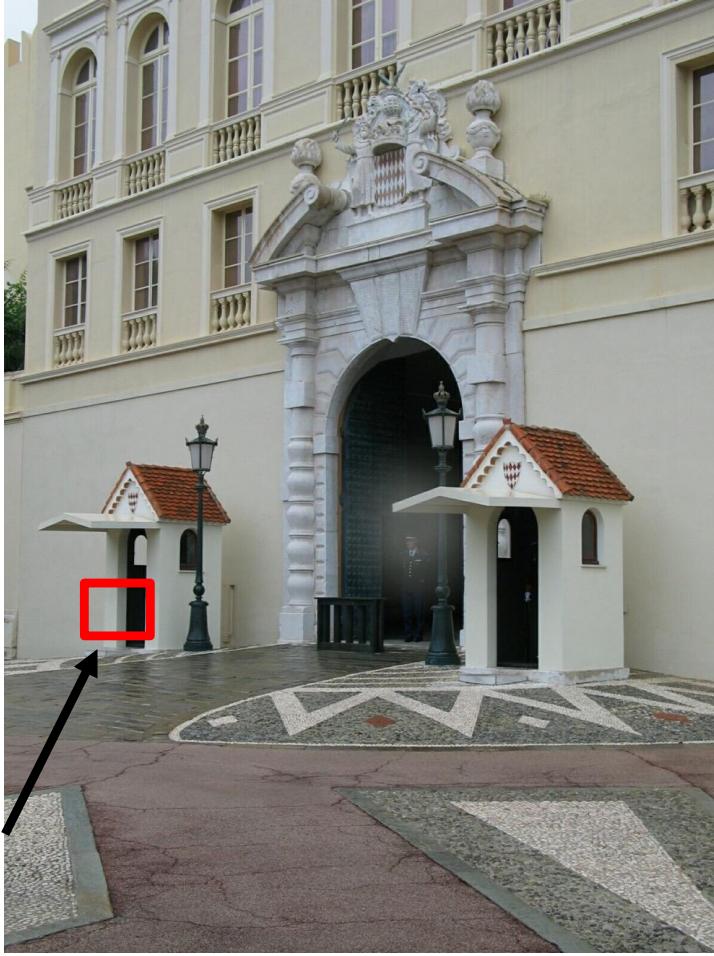
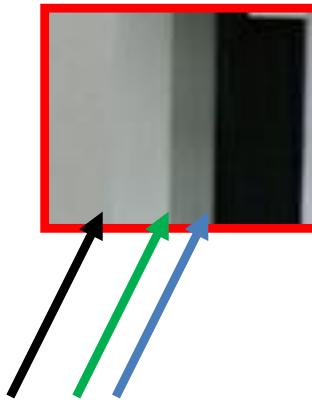
What causes edges?



Why edge detection?

- Extract information
- Recognize objects
- Understand scene
- Reconstruct 3D from images
 - Recover viewpoint and geometry





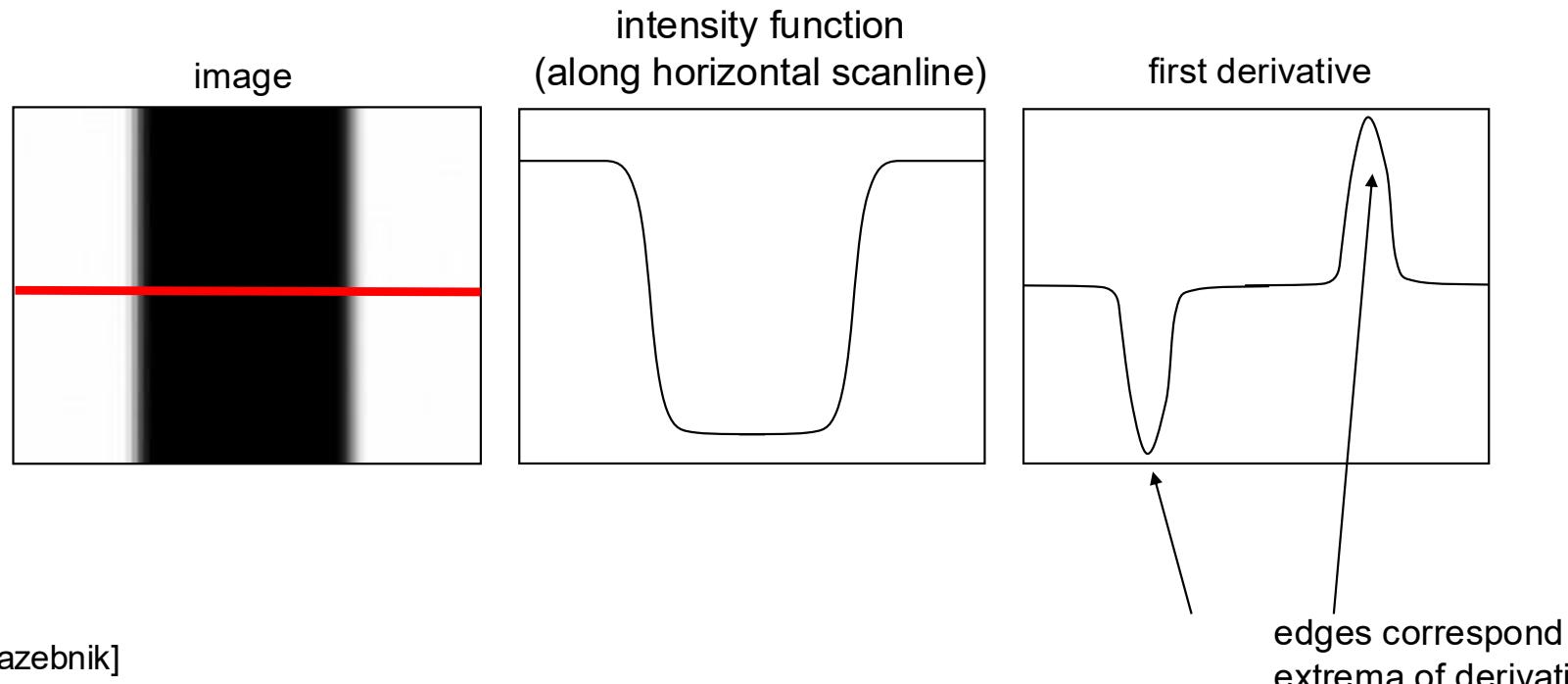
[Source: Steve Seitz]

[Source: Steve Seitz]

[Source: Steve Seitz]

Characterizing Edges

- An edge is a place of rapid change in intensity



[Source: S. Lazebnik]

Summary

- Image gradients
- Finite-difference approximation filters
- Gradient magnitude and direction
- Image noise and gradients
- Edges and their importance