Computational Photography (CSCI 3240U)

 A is a university of a university of \mathcal{A} **Faisal Z. Qureshi** http://vclab.science.ontariotechu.ca

Today's lecture

- How to compute image derivatives by fitting polynomials to 1D image patches?
	- Taylor series expansion around a patch center
	- Least square fitting of a system of linear equations

Image as a surface in 3D

Consider a gray-scale image $I(x, y)$ then the height of the surface at (x, y) is $I(x, y)$. The surface passes through the 3D point $(x, y, I(x, y))$.

Image rows (or columns) as 2D graphs

Paths as curves in 2D

Taylor series expansion of $I(x)$ near the "patch" center 0

 $I(x) = ?$

 $0 \quad x$ Intensity $I(x)$ $I(0)$

Taylor series expansion of $I(x)$ near the "patch" center 0

 $I(x) = I(0)$

Taylor series expansion of $I(x)$ near the "patch" center 0

 $I(x) = I(0) + xI'(0)$

Taylor series expansion of $I(x)$ near the "patch" center 0

$$
I(x) = I(0) + xI'(0) + \frac{x^2}{2!}I''(0)
$$

Taylor series expansion of $I(x)$ near the "patch" center 0 $I(x) = I(0) + xI'(0) +$ x^2 2! $I''(0) +$ x^3 3! $I'''(0) + \cdots +$ x^n $n!$ $I^{(n)} + R_{n+1}(x)$

The residual $R_{n+1}(x)$ satisfies:

lim $\lim_{x \to 0} R_{n+1}(x) = 0$

Intensity

Taylor series expansion of $I(x)$ near the "patch" center 0 $I(x) = I(0) + xI'(0) +$ x^2 2! $I''(0) +$ x^3 3! $I'''(0) + \cdots +$ x^n $n!$ $I^{(n)} + R_{n+1}(x)$ Nth order approximation

For a given x, approximation depends on $(n + 1)$ constants corresponding to the intensity derivative at the patch origin.

 $-w$ 0 x w Intensity $I(x)$ $I(0)$

Taylor series expansion of $I(x)$ near the patch center 0

$$
I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)
$$

Re-write in matrix form

 $-w$ 0 x w Intensity $I(x)$ $I(0)$

Taylor series expansion of $I(x)$ near the patch center 0

$$
I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)
$$

Re-write in matrix form

$$
I(x) \approx \begin{bmatrix} 1 & x & \frac{1}{2}x^2 & \frac{1}{6}x^3 & \dots & \frac{1}{n!}x^n \end{bmatrix} \begin{bmatrix} I(0) \\ I''(0) \\ I'''(0) \\ \vdots \\ I^{(n)} \end{bmatrix}
$$

For notational simplicity, lets refer the vector of intensity and its derivatives as **d**

 $-w$ 0 x w Intensity $I(x)$ $I(0)$

Taylor series expansion of $I(x)$ near the patch center 0

$$
I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)
$$

Example Show the 0th order approximation

Faisal Qureshi - CSCI 3240U 14

 $-w$ 0 x w Intensity $I(x)$ $I(0)$

Taylor series expansion of $I(x)$ near the patch center 0

$$
I(x) \approx I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)
$$

Practice Question Show the 1^{st} and 2^{nd} order approximations

Fit a polynomial of degree n to the patch intensities

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree 2

 $I(x) = I(0) + xI'(0) +$ 1 2 $x^2I''(0)$ Use second-order Taylor series expansion

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree 2

 $I(x) = I(0) + xI'(0) +$ 1 2 $x^2I''(0)$ Use second-order Taylor series expansion **Unknowns**

Fit a polynomial of degree n to the patch intensities

For convenience, we refer to patch intensities as I_x where $x \in [1, 2w + 1]$. Then I_{w+1} refers to the intensity at patch center.

Fitting a polynomial of degree 2

 $I(x) = I(0) + xI'(0) +$ 1 2 $x^2I''(0)$ Use second-order Taylor series expansion

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree n

Use nth order Taylor series expansion

$$
I(x) = I(0) + xI'(0) + \frac{1}{2}x^2I''(0) + \frac{1}{6}x^3I'''(0) + \dots + \frac{1}{n!}x^nI^{(n)}(0)
$$

\n
$$
(n + 1) \text{ Unknowns}
$$

Observation

A $(2w + 1)$ -patch gives $2w + 1$ equations.

Conclusion

For a patch of size $(2w + 1)$, it is only possible to fit a polynomial of degree $2w$.

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree n

Use nth order Taylor series expansion $I(x) = I(0) + xI'(0) +$ 1 2 $x^2I''(0) +$ 1 6 $x^3 I'''(0) + \cdots +$ 1 $n!$ $x^n I^{(n)}(0)$ $(n + 1)$ Unknowns

Solve this linear system of equations in terms of *d* minimizes the fit error.

Solution *d* is called the *least squares fit*

Oth order estimation (constant) of $I(x)$

System of linear equations that needs solving:

$$
\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} [d_0]
$$

Oth order estimation (constant) of $I(x)$

System of linear equations that needs solving:

Solution is the mean intensity of the patch

Provides the estimate of intensity of the center of the patch

1st order estimation (linear) of $I(x)$

System of linear equations that needs solving:

$$
\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \end{bmatrix}
$$

1st order estimation (linear) of $I(x)$

System of linear equations that

Solution minimizes the sum of vertical distance between the line and the image intensities.

needs solving: **needs** solving: **needs** solving: **needs** solving: derivative at the patch center

Matrix representation of a line (in 2D)

$$
y = b + mx = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix}
$$

2nd order estimation (quadratic) of $I(x)$

System of linear equations that needs solving:

$$
\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 9/2 \\ 1 & -2 & 2 \\ 1 & -1 & 1/2 \\ 1 & 0 & 0 \\ 1 & 1 & 1/2 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \\ 1 & 3 & 9/2 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \end{bmatrix}
$$

2nd order estimation (quadratic) of $I(x)$

System of linear equations that needs solving:

Solution fits a parabola/hyperbola/ellipse to patch intensities

Provides the estimate of intensity and its first and second derivatives at the patch center

Matrix representation of second order polynomials

$$
y = ax^2 + bx + c = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x^2 \\ x \\ 1 \end{bmatrix} = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}
$$

 $h_{\mathbf{1}}$

 Γ

Least squares fitting often use the following notation to represent the system of linear equations

 $Ax = b$

The solution is

 $x = A^{-1}b$

where A^{-1} is inverse (or pseudoinverse) of A .

Recall that we need to solve the following system of linear equations when approximating patches with polynomials.

Least squares fitting

Weighted least squares estimate of $I(x)$

Give more weight to the pixels near center and less weight to pixels that are far from center,

e.g., $\omega(x) = e^{-x^2}$

Bias our estimate of $I'(0)$ towards the center of the patch.

For patch

The system of linear equations becomes

$$
\begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} I_{(2w+1)\times 1} = \begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} X_{(2w+1)\times n} d_{n\times 1}
$$

and the solution \boldsymbol{d} minimizes the norm:

$$
\left\| \begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} (I - Xd) \right\|^2
$$

Faisal Qureshi - CSCI 3240U 38

Estimating image derivatives

- For each row y , define a window of width $2w + 1$ at pixel (i.e., column) x
	- Fit a polynomial (usually of degree 1 or 2)
	- Assign the fitted polynomial's derivates at location 0 (i.e., center of the patch, or column y in the image space)
	- Slide the window one over, until the end of the row

Image derivatives

Fitting a 3rd-order Taylor series using a 5-pixel patch

Summary

- 1D image patches
- Approximating 1D image patches via polynomials
- Computing image derivatives via fitting polynomials
- Least squares solution to a system of linear equations
- Weighted least squares