Compute derivatives at pixel 0 (i.e., the center of the patch)

Fit a polynomial of degree n to the patch intensities

For convenience, we refer to patch intensities as I_x where $x \in [1, 2w + 1]$. Then I_{w+1} refers to the intensity at patch center.

Fitting a polynomial of degree 2

Use second-order Taylor series expansion $I(x) = I(0) + xI'(0) + \frac{1}{2}x^2I''(0)$

Druiz - Oct 30, 2024	
11325	. 7
Solution: $I(x) = I(0) + x I(0) + \frac{x^2}{2!} I'(0) + \frac{x^2}{2!}$	$\frac{\pi^{3}}{3!}I^{m}(0)+\cdots$
T 3 T T T	Do not worry about the higher-order
Given	effecte. *
$\begin{array}{ll} \chi = 0 \\ \chi = 1 \\ \end{array}, I(0) = 3 \\ \chi = 1 \\ \end{array}, I(1) = 2 \\ \end{array} \qquad \begin{array}{ll} 3 = I(0) \\ 2 = I(0) + I(0) + \frac{1}{2}I'(0) \\ \chi = I(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) \\ \chi = I(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) \\ \chi = I(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) \\ \chi = I(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) + \frac{1}{2}I'(0) \\ \chi = I(0) + \frac{1}{2}I'(0) + \frac{1}{2$	$\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & Y_2 \\ 1 & -1 & Y_2 \end{bmatrix} \begin{bmatrix} 1/0 \\ I'/0 \end{bmatrix}$
x = -1, $I(-1) = 1$ $I = I(0) = I(-1) + 2$	b = A x
$\begin{aligned} x = 2, & I(2) = 5 & 5 = I(0) + 2I(0) + J'(0) \\ x = -2, & I(-2) = 1 & 4 = I(0) - 2I'(0) + J'(0) \end{aligned}$	I = X d
$\begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 5 \\ 1 & -1 & 0 & 5 \\ 1 & 2 & 1 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} I(0) \\ I'(0) \\ I''(0) \\ I''(0) \end{bmatrix}$	χ $\chi = Ab$
Z = X d	
$ = \mathbf{I} \mathbf{X} \mathbf{X} = \mathbf{I} \mathbf{X} \mathbf{C} $	(Ax=6)
$z = (x'x)^{-1} x^{T} I$	

Compute derivatives at pixel 0 (i.e., the center of the patch)

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree n

Use nth order Taylor series expansion

$$I(x) = I(0) + xI'(0) + \frac{1}{2}x^{2}I''(0) + \frac{1}{6}x^{3}I'''(0) + \dots + \frac{1}{n!}x^{n}I^{(n)}(0)$$

$$(n+1) \text{ Unknowns}$$

Observation

A (2w + 1)-patch gives 2w + 1 equations.

Conclusion

For a patch of size (2w + 1), it is only possible to fit a polynomial of degree 2w.

Compute derivatives at pixel 0 (i.e., the center of the patch)

Fit a polynomial of degree n to the patch intensities

Fitting a polynomial of degree n

Oth order estimation (constant) of I(x)

System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} d_0 \end{bmatrix}$$

Oth order estimation (constant) of I(x)

System of linear equations that needs solving:

Solution is the mean intensity of the patch

Provides the estimate of intensity of the center of the patch

1st order estimation (linear) of I(x)

System of linear equations that needs solving:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \end{bmatrix}$$

1st order estimation (linear) of I(x)

System of linear equations that needs solving:

Solution minimizes the sum of vertical distance between the line and the image intensities.

Provides the estimate of intensity and its derivative at the patch center

Matrix representation of a line (in 2D)

$$y = b + mx = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix}$$

2nd order estimation (quadratic) of I(x)

System of linear equations that needs solving:

$$\begin{bmatrix} I_1\\I_2\\I_3\\I_4\\I_5\\I_6\\I_7 \end{bmatrix} = \begin{bmatrix} 1 & -3 & 9/2\\1 & -2 & 2\\1 & -1 & 1/2\\1 & 0 & 0\\1 & 1 & 1/2\\1 & 2 & 2\\1 & 3 & 9/2 \end{bmatrix} \begin{bmatrix} d_0\\d_1\\d_2\end{bmatrix}$$

2nd order estimation (quadratic) of I(x)

System of linear equations that needs solving:

Solution fits a parabola/hyperbola/ellipse to patch intensities

Provides the estimate of intensity and its first and second derivatives at the patch center

Matrix representation of second order polynomials

$$y = ax^{2} + bx + c = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x^{2} \\ x \\ 1 \end{bmatrix} = \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix} \begin{bmatrix} x^{2} \\ 1 \end{bmatrix}$$

h٦

Г

Least squares fitting often use the following notation to represent the system of linear equations

Ax = b

The solution is

 $x = A^{-1}b$

where A^{-1} is inverse (or pseudoinverse) of A.

Recall that we need to solve the following system of linear equations when approximating patches with polynomials.

An=Ø

Least squares fitting

Weighted least squares estimate of I(x)

Give more weight to the pixels near center and less weight to pixels that are far from center,

e.g., $\omega(x) = e^{-x^2}$

Bias our estimate of I'(0)towards the center of the patch. For patch

The system of linear equations becomes

$$\begin{bmatrix} \omega_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} \mathbf{I}_{(2w+1)\times 1} = \begin{bmatrix} \omega_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} \mathbf{X}_{(2w+1)\times n} \mathbf{d}_{n\times 1}$$

and the solution **d** minimizes the norm:

$$\left\| \begin{bmatrix} \omega_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_{2w+1} \end{bmatrix} (I - Xd) \right\|^2$$

Faisal Qureshi - CSCI 3240U

Estimating image derivatives

- For each row y, define a window of width 2w + 1 at pixel (i.e., column) x
 - Fit a polynomial (usually of degree 1 or 2)
 - Assign the fitted polynomial's derivates at location 0 (i.e., center of the patch, or column y in the image space)
 - Slide the window one over, until the end of the row

Image derivatives

Fitting a 3rd-order Taylor series using a 5-pixel patch

Summary

- 1D image patches
- Approximating 1D image patches via polynomials
- Computing image derivatives via fitting polynomials
- Least squares solution to a system of linear equations
- Weighted least squares

Taylor Series $A\vec{a} = \vec{b}$

limit of

- ont liers - vertical lines

3) Pene do - inverse