Intersecting two parallel lines
 $y = 3x + 2 \rightarrow 3x - y + a = 0$
 $y = 3x - 1 = 0$
 $y = -1$ \mathcal{Y} $i = i(-1+2)-j(3-6)+k(-3+3)$ \blacktriangleright X $F_{\text{Paisal Qureshi} - \text{Scal Qureshi} = \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix} + \begin{bmatrix} 4 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{$

57 images Camera should change orientation only, not position. Keep camera settings (gain, focus, speed, aperture) fixed, if possible.

Using 28 out of 57 images

Using all 57 images

Image stitching (Autostitch)

Using all 57 images. Laplacian blending.

Brown & Lowe; ICCV 2003

Linear image wraps

- To align multiple photos for image stitching, we must warp these images in such a way that all lines are preserved.
	- Lines before warping remain lines after warping
- Linear image wraps and *homographies*

Linear image wraps

- Definition: an image warp is linear if every 2D line l in the original image is transformed into a line l' in the warped image
- Property: Every linear warp can be expressed as a 3×3 matrix H that transforms homogeneous image coordinates (we won't discuss the proof here)

 $H = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} q_i & q_i & q_i \\ q_i & q_i & q_i \\ 2l_i & q_i & q_i \\ q_i & q_i & q_i \end{bmatrix}$ $=\begin{bmatrix} a' & b' & c' \\ d' & e' & S' \\ S' & K' & 1 \end{bmatrix}$ Ponel Cocations between the rignal
image and its mknowns. 8

Warping images using homography

Linear warping equation:

 $I(\bm{p}) = I' (H\bm{p})$ and also $I'(\bm{q}') = I (H^{-1}\bm{q}')$

Computing warp I' from I and H

- Compute H^{-1}
- To compute the color of pixel (u, v) in the warped image
	- Compute \overline{a} \boldsymbol{b} \mathcal{C}_{0} $= H^{-1}$ $\overline{\mathcal{U}}$ \mathcal{V} 1
	- Copy color from $I\left(\frac{a}{a}\right)$ \mathcal{C}_{0} $\frac{b}{a}$ \mathcal{C}_{0}

What if location $\left(\frac{a}{a}\right)$ \mathcal{C}_{0}^{0} $\frac{b}{c}$ \mathcal{C}_{0}^{0} is not valid pixel locations?

Computing warp I' from I and H

Homography & image mosaicing

- Every photo taken from a tripod-mounted camera is related by a homography
- Assumptions
	- No lens distortion
	- Camera's center of projection does not move while camera is mounted on the tripod
- Problem
	- These homographies that relate photos taken from a tripod-mounted camera are *unknown*
		- We need to estimate them

Homography

• Generally speaking, points that lie on two planes are related via homography.

Homography The location of the point and that of its projection are Camera related via a Homography. $w \left[\begin{array}{c} x' \ y' \ 1 \end{array} \right] = \mathbf{H} \left[\begin{array}{c} x \ y \ 1 \end{array} \right].$ Image plane Projection of a point in a world $\bf H$ plane to the image (x,y) plane World plane

Homography

• Generally speaking, points that lie on two planes are related via homography.

• This also means that the projections of points (that lie on a common plane) in two cameras are related via homography.

Solving homography
\n
$$
w\begin{bmatrix} x'_{i} \\ y'_{i} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix}
$$
\n
$$
w\begin{bmatrix} x'_{i} \\ y'_{i} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix}
$$
\n
$$
w\begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} = h_{11}x_{i} + h_{12}y_{i} + h_{13}
$$
\n
$$
w\begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} = h_{21}x_{i} + h_{22}y_{i} + h_{23}
$$
\n
$$
w = h_{31}x_{i} + h_{32}y_{i} + h_{33}
$$

Solving for homography (Step 1)

• Re-write homography relationship as homogeneous equations

Solving for homography (Step 2)

• We can then write these as matrix-vector product

Solving for homography (Step 3)

• Given *n* correspondences between two images, setup $Ax = 0$ and solve for \mathcal{X} .

Solving $Ax = 0$

• Estimate using least-square fitting

$$
x^* = \underset{x}{\text{argmax}} \, ||Ax||^2 \, \text{ s.t. } ||x|| = 1
$$

• The solution is the right *null-space* of A; therefore, the solution is the eigenvector corresponding to the smallest eigenvalue of A^TA

- Estimate homography
- Use it to fill the colors from the "other" image

Extract features

Find matches

Use RANSAC to estimate homography

Perform image stitching

