Image Interpolation

Computational Photography (CSCI 3240U)

Faisal Z. Qureshi http://vclab.science.ontariotechu.ca

How do we resize images?

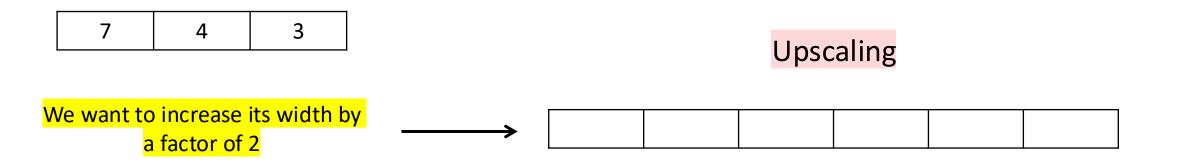
Original

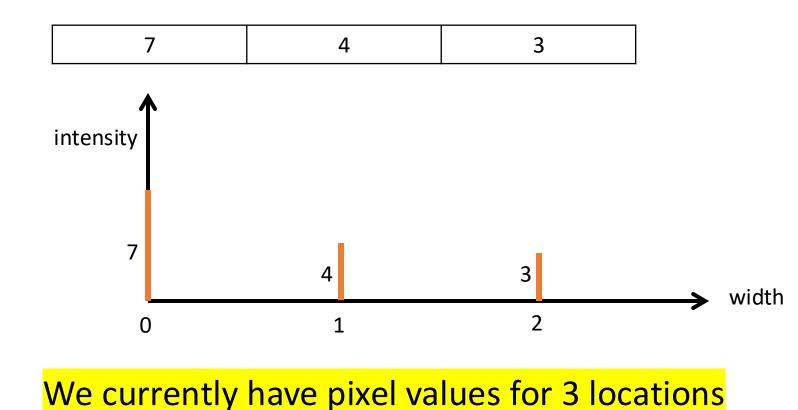
Downscaling

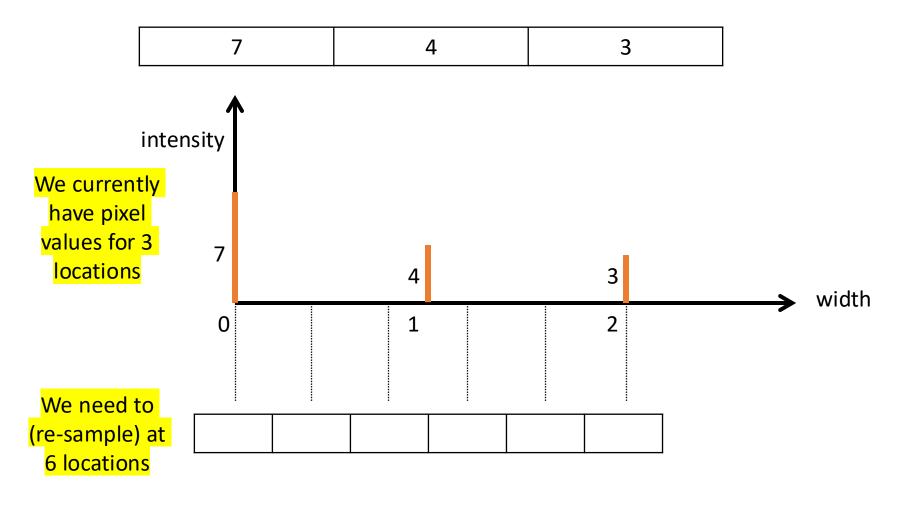
Let's consider a 1D image

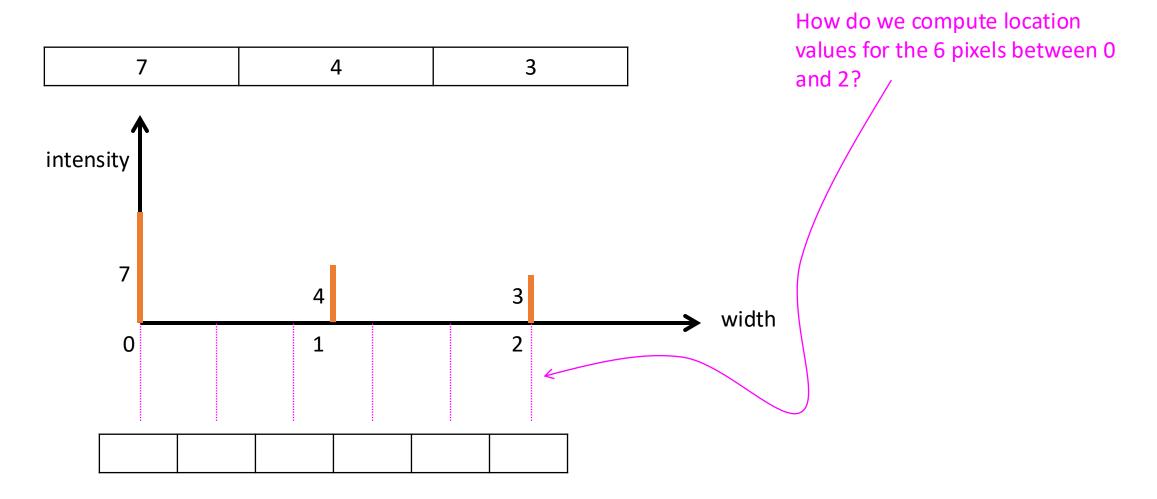
We want to increase its width by a factor of 2

Let's consider a 1D image

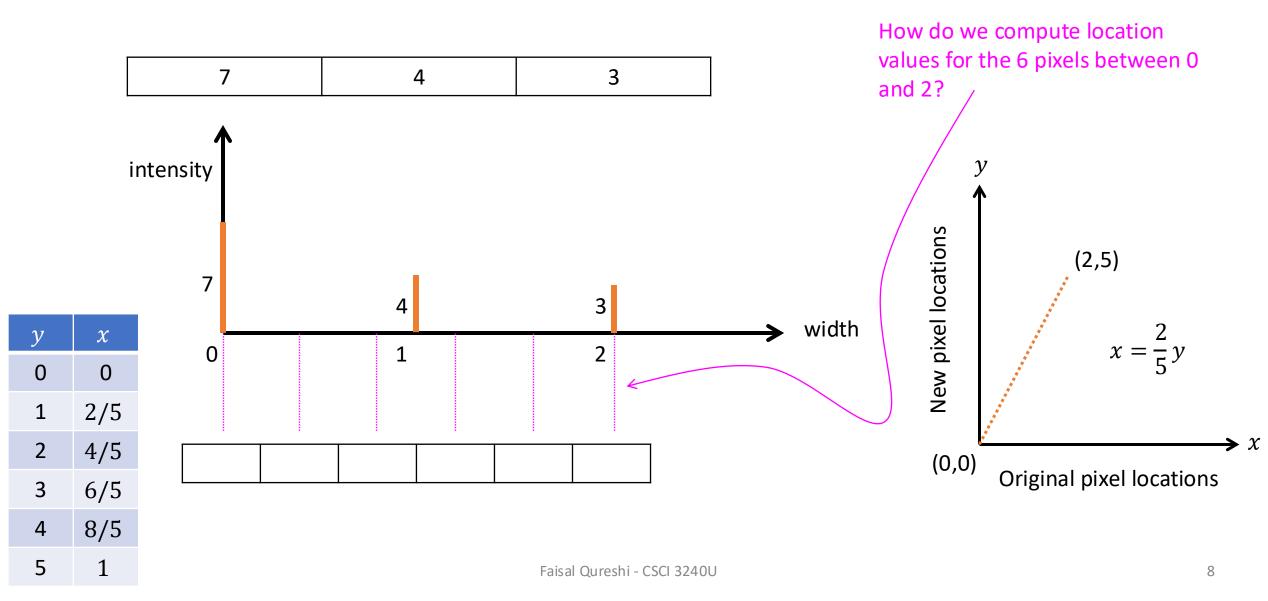


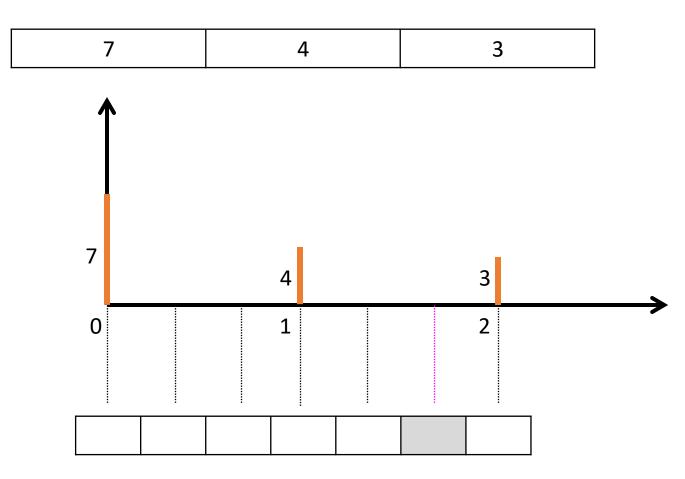




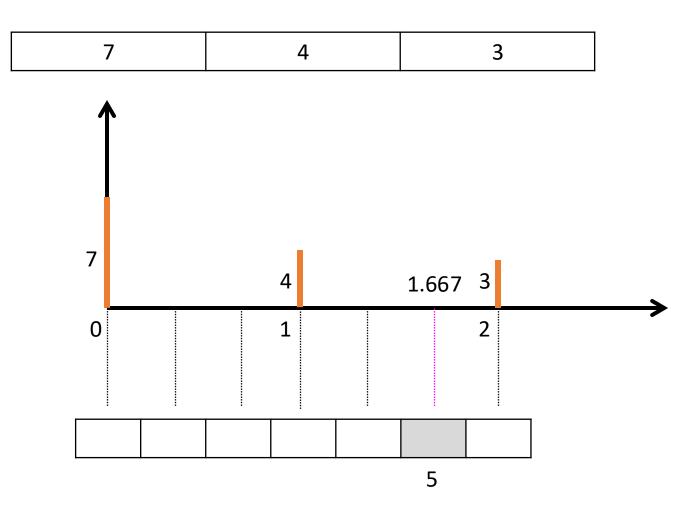


Faisal Qureshi - CSCI 3240U





What is the location (between 0 and 2) of the shaded pixel?



What is the location (between 0 and 2) of the shaded pixel?

Given

Last pixel location in original image = 2 Last pixel location in resulting image = 6

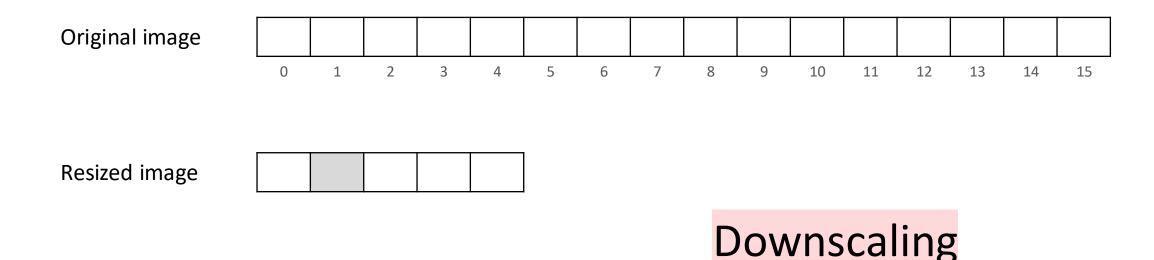
Use the following relationship (that we developed in previous slides):

$$x = \frac{2}{6}y$$

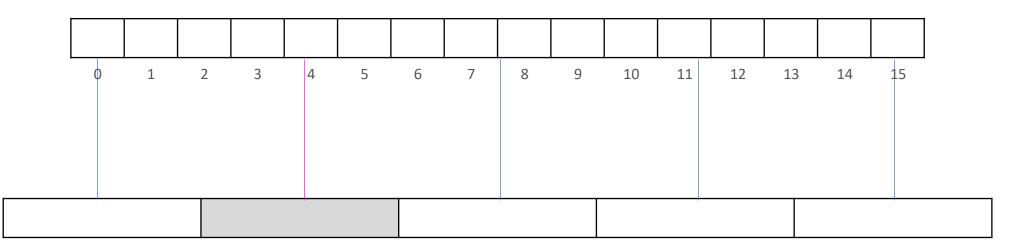
Sample location is

$$x = \frac{2}{6}(5) = 1.667$$

Consider a 16-pixel 1D image. You are asked to resize it to a 5-pixel 1D image. What is the location of pixel 2 (between 0 and 15) of the new image?



Consider a 16-pixel 1D image. You are asked to resize it to a 5-pixel 1D image. What is the location of pixel 2 (between 0 and 15) of the new image?



Given

Use the relationship developed earlier

15

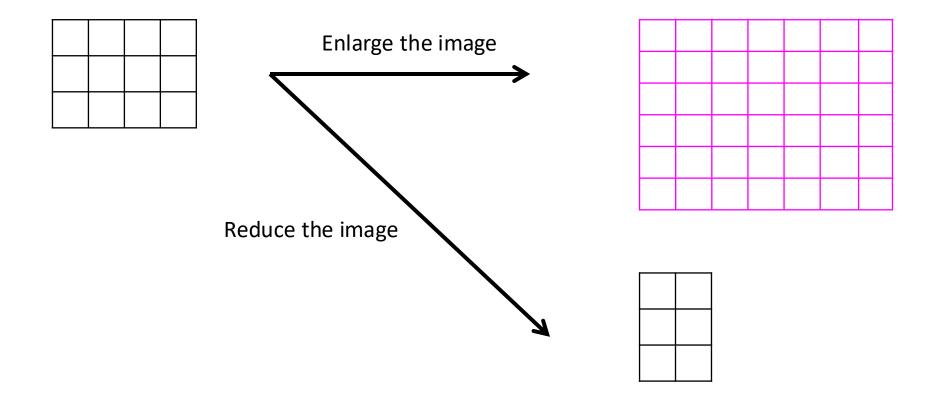
Sample location is

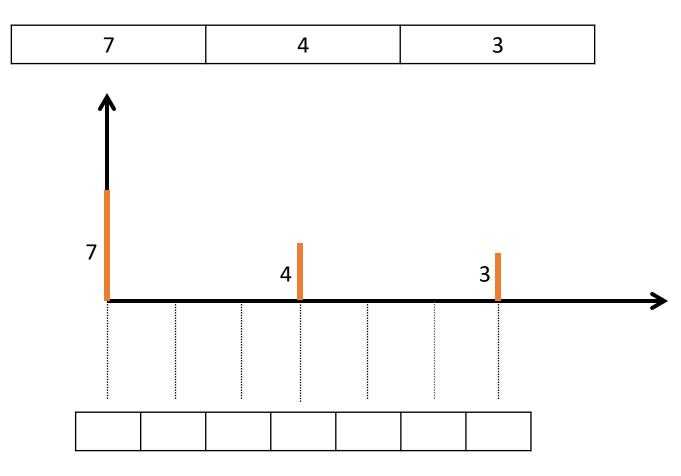
$$x = \frac{15}{4}(1) = 3.75 \approx 4$$

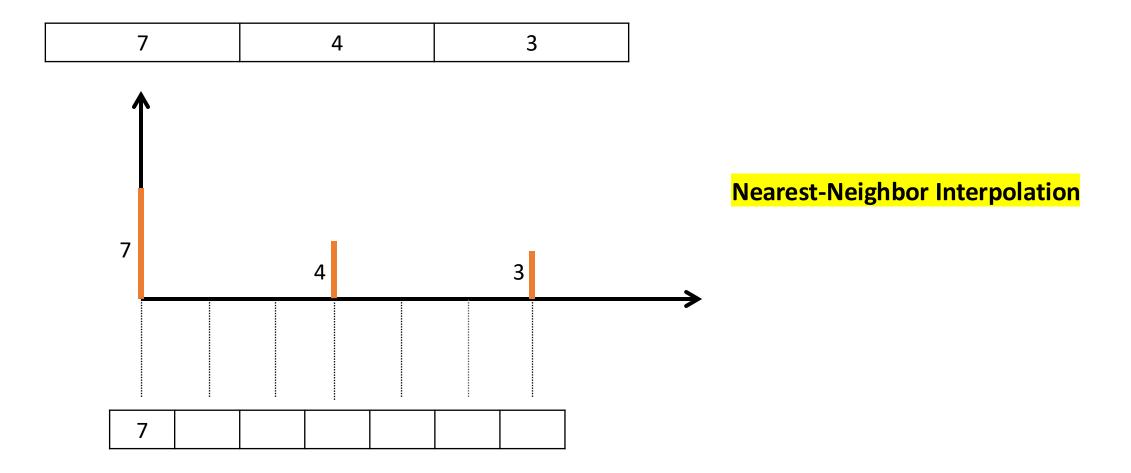
Last pixel location in original image = 15 Last pixel location in resulting image = 4

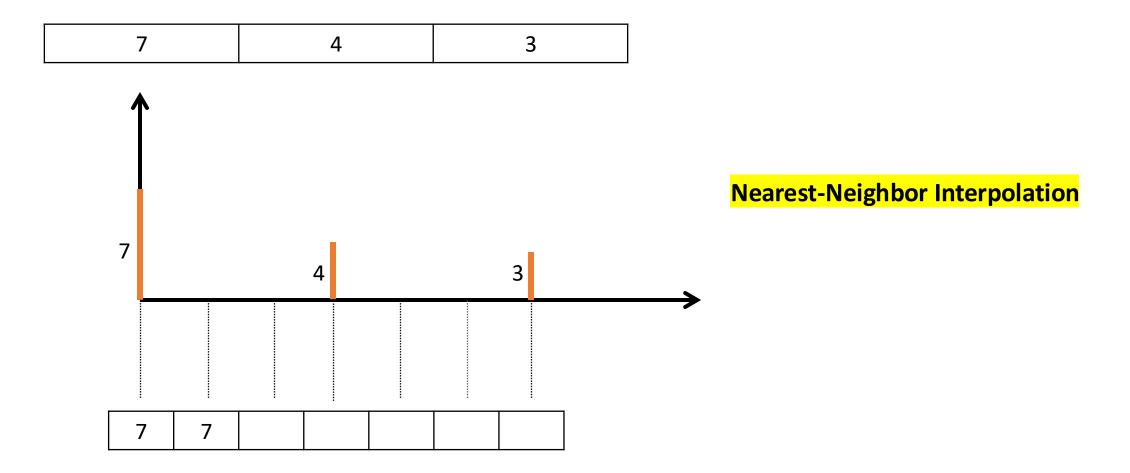
x = - y

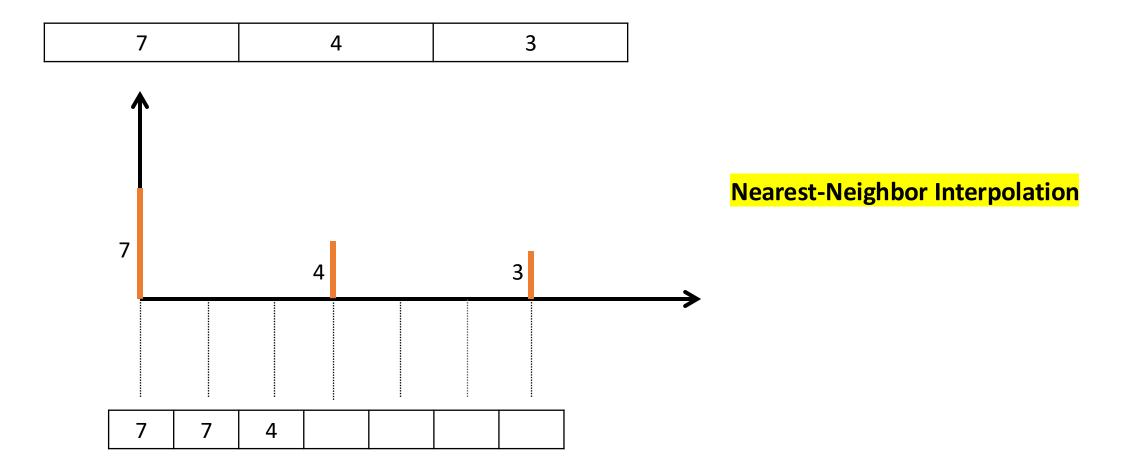
Resampling pixel locations (in 2D)

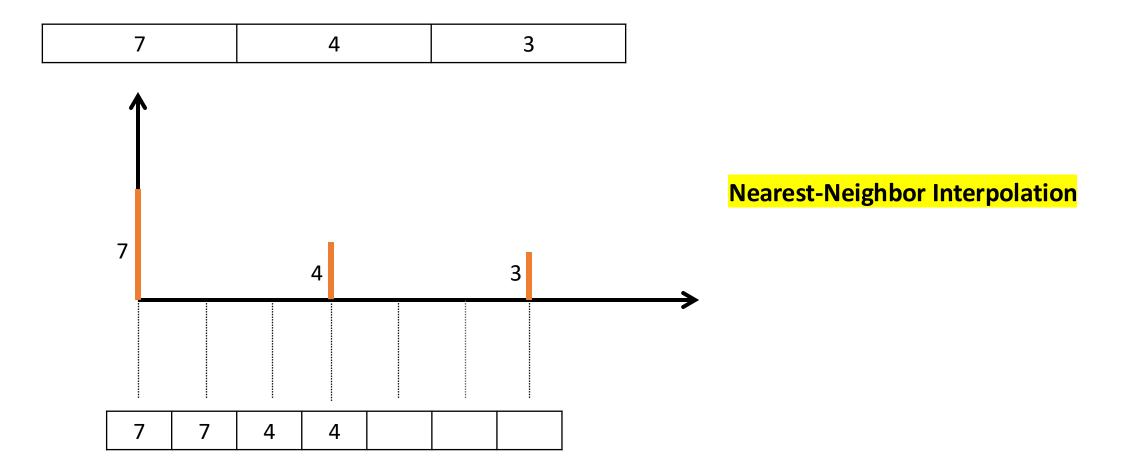


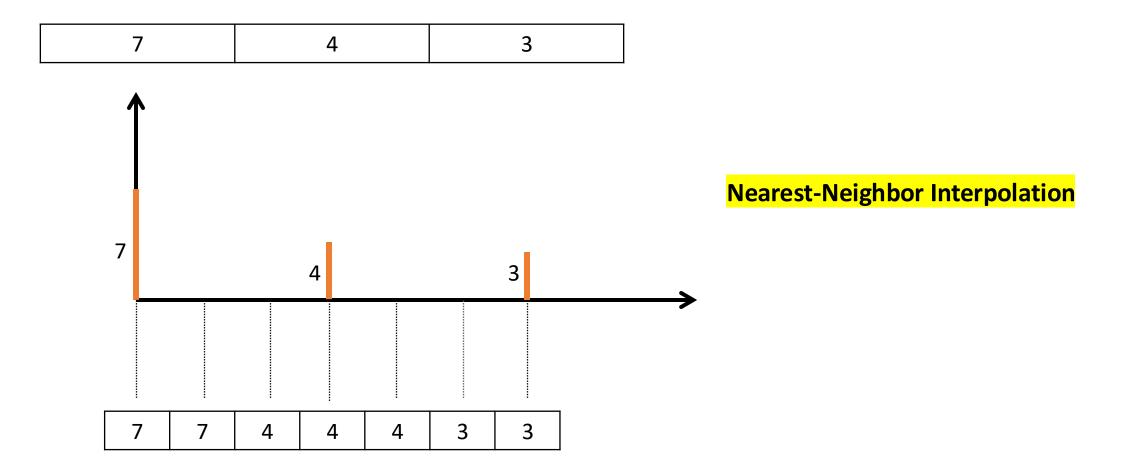












Nearest-Neighbor Interpolation

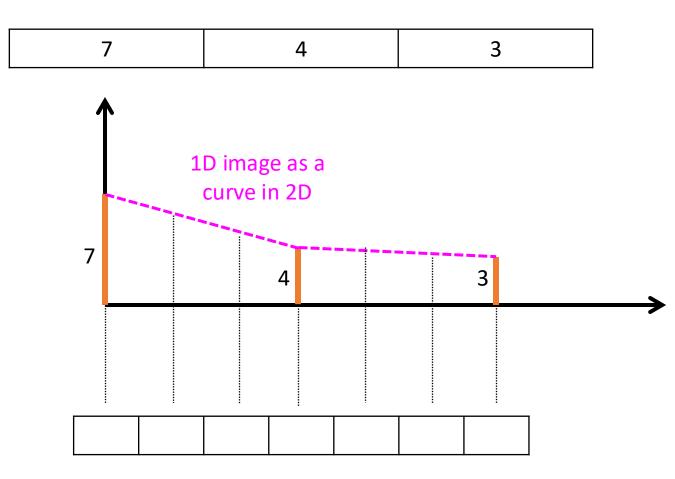
- Easy to implement.
- Results in blocky or pixelated results
- Does not consider neighboring pixels
- Losses details and smoothness
- Use other methods, e.g., bilinear, bicubic, etc., for higher-quality image resizing

Nearest-Neighbor Interpolation

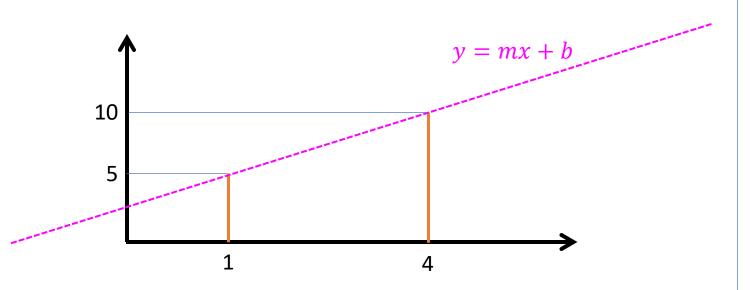
Nearest-Neighbor Interpolation



Linear Interpolation



2D Line Fitting

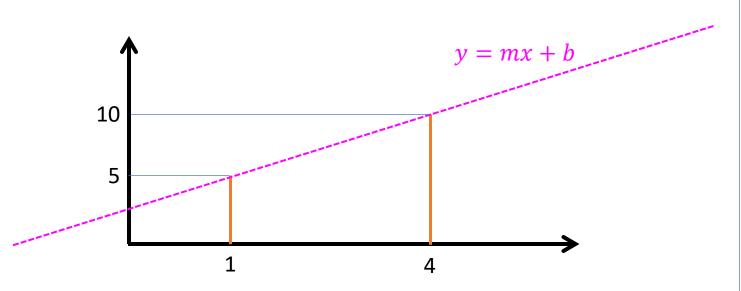


2D Line Fitting

A line between (x_1, y_1) and (x_2, y_2) is given by:

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

2D Line Fitting



2D Line Fitting

A line between (x_1, y_1) and (x_2, y_2) is given by: Matrix form

Re-write

 $x_1m + b = y_1$ $x_2m + b = y_2$

as

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
$$\begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

where

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

2D Line Fitting y = mx + b10 5 1 4

A line between (x_1, y_1) and (x_2, y_2) is given by:

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

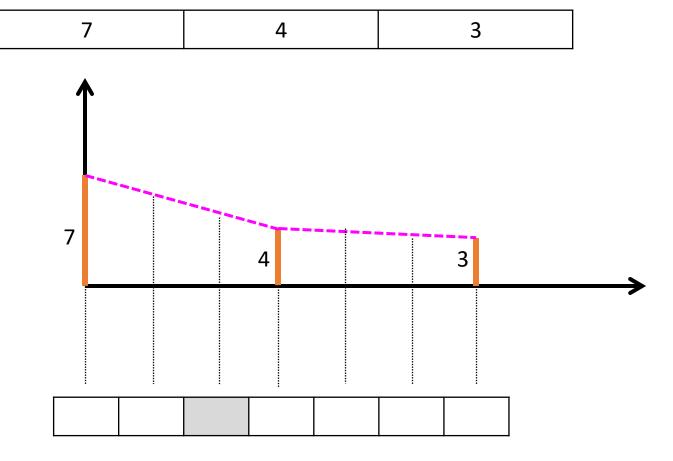
Practice Question

Estimate (fit) the dotted-line shown on the left.

Linear Interpolation

Example

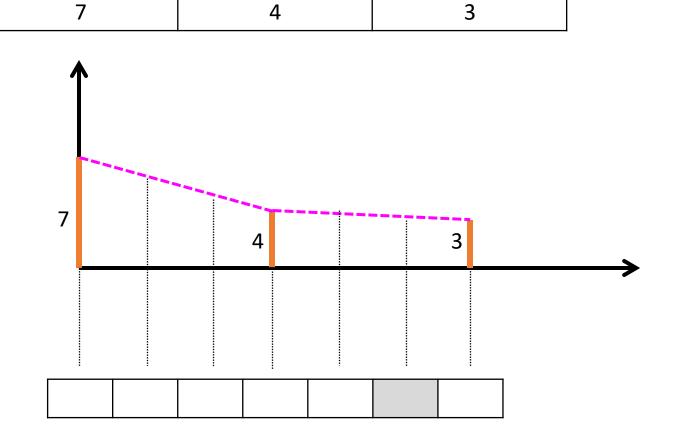
Compute the value for shaded pixel?



Linear Interpolation

Practice Question

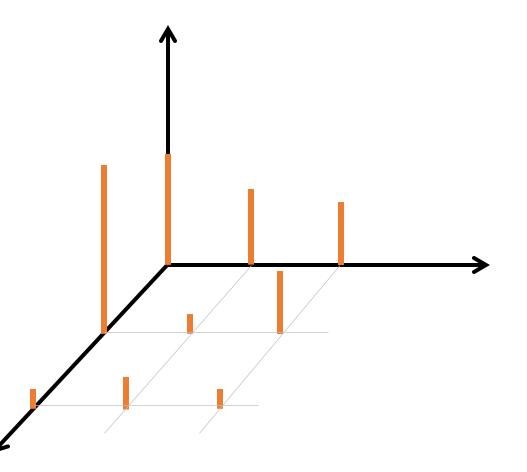
Compute the value for shaded pixels?



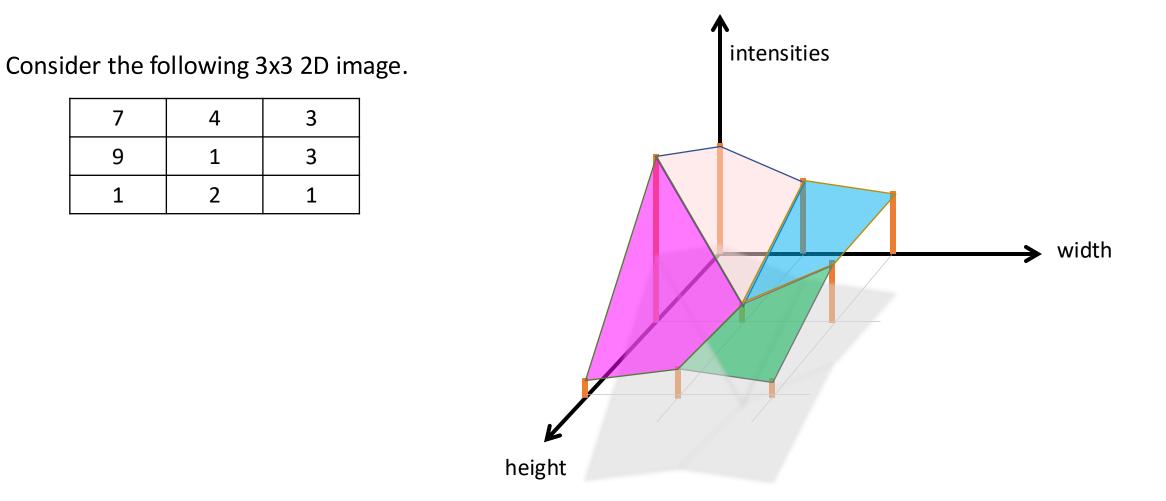
Images are not just 1D. How do we deal with a 2D image?

Consider the following 3x3 2D image.

7	4	3
9	1	3
1	2	1



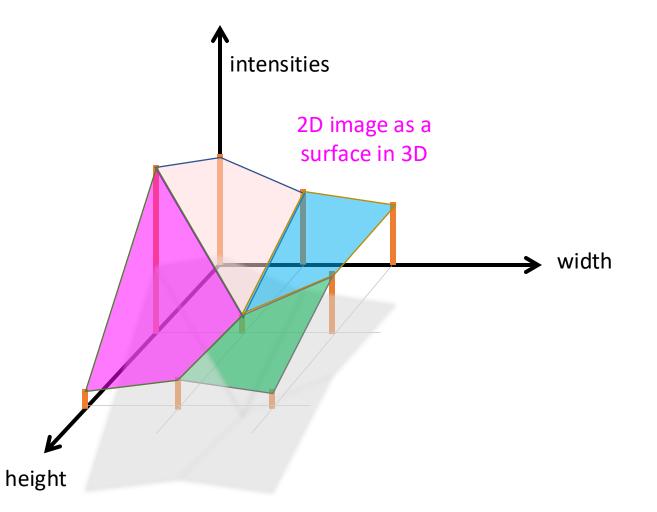
Images are not just 1D. How do we deal with a 2D image?



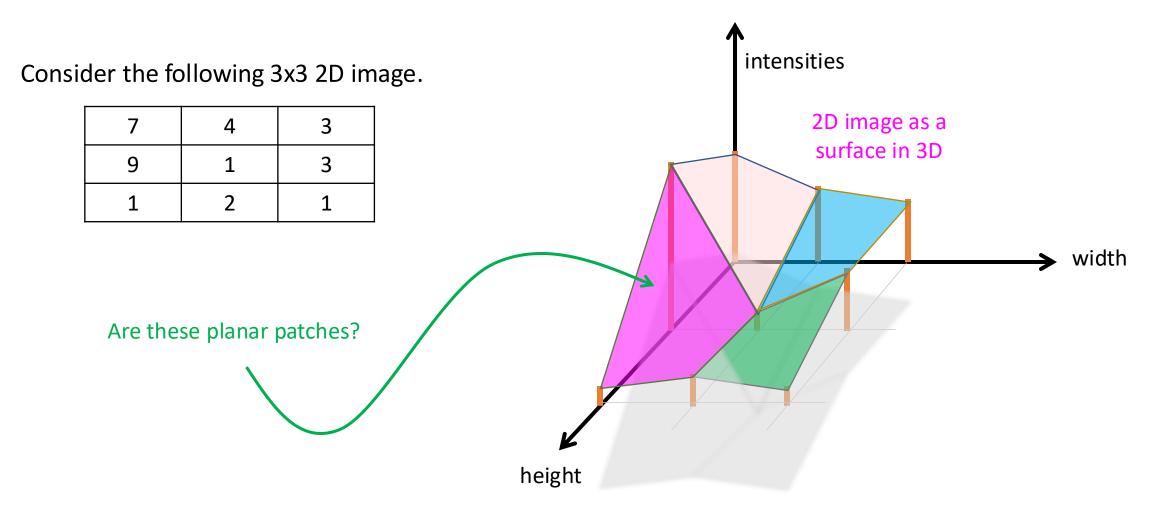
Images are not just 1D. How do we deal with a 2D image?

Consider the following 3x3 2D image.

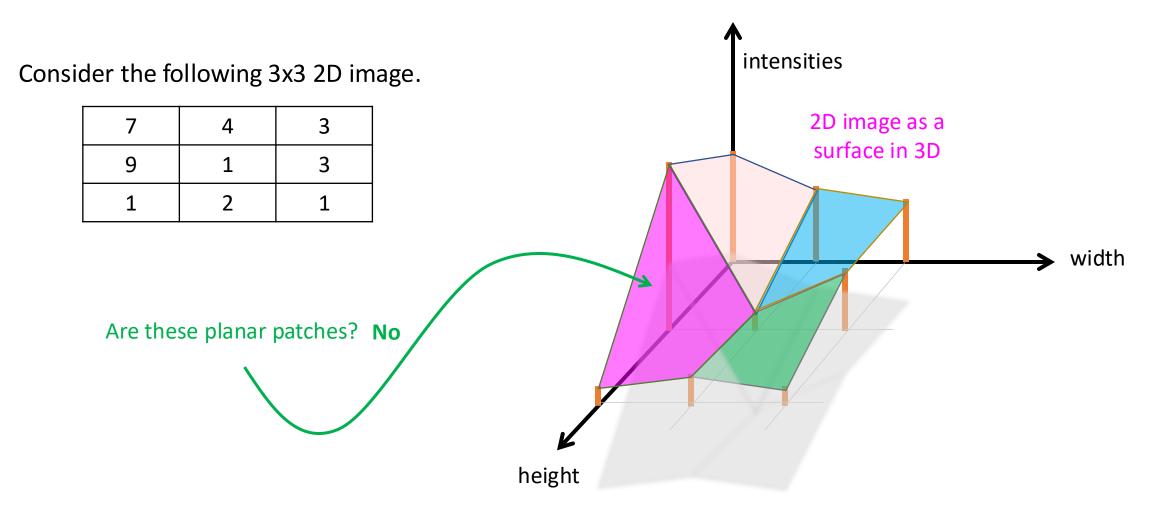
7	4	3
9	1	3
1	2	1

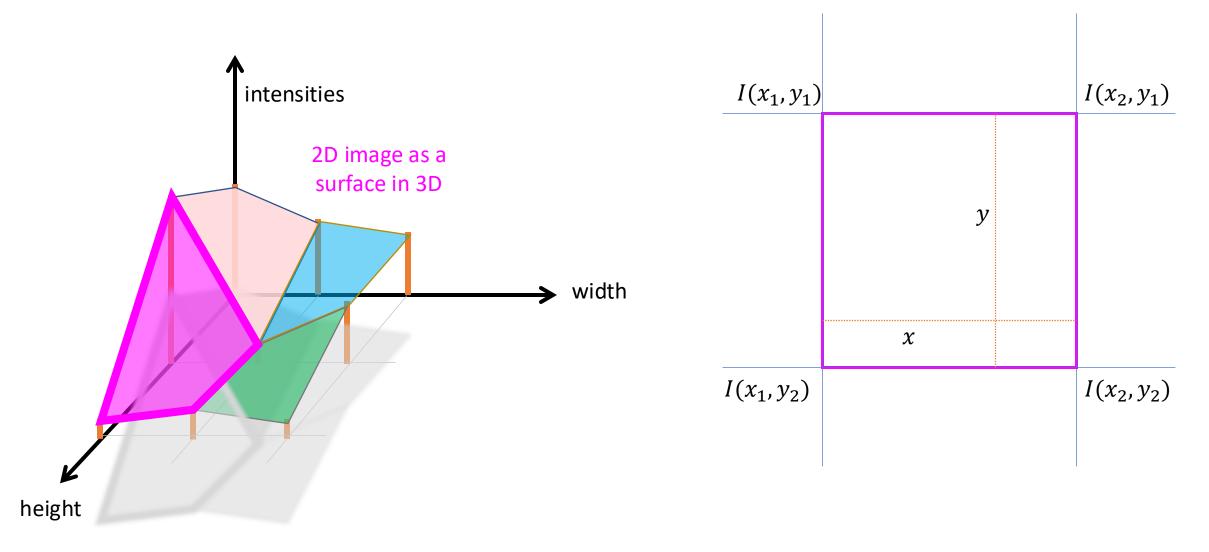


Images are not just 1D. How do we deal with a 2D image?

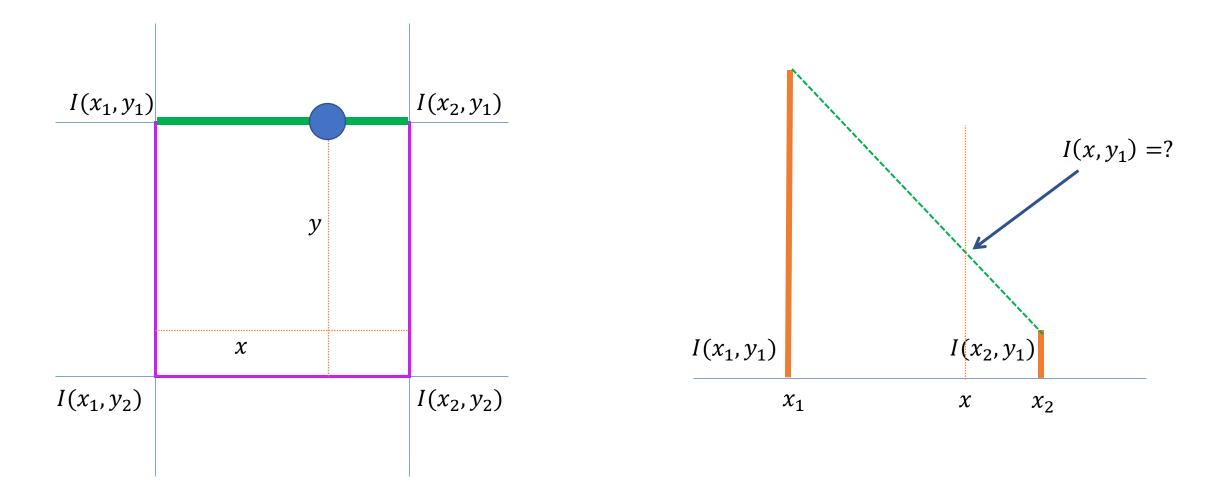


Images are not just 1D. How do we deal with a 2D image?

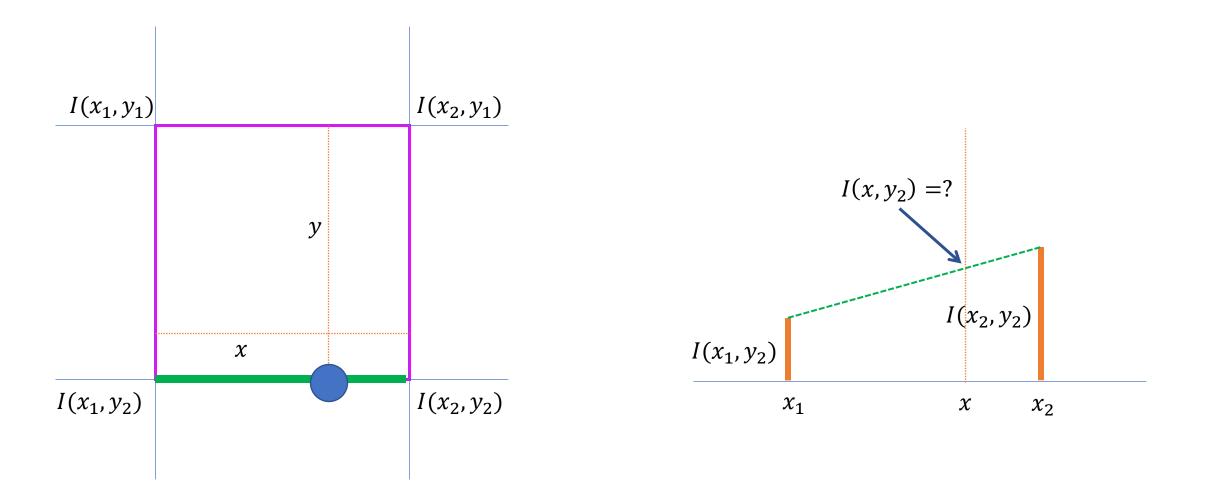


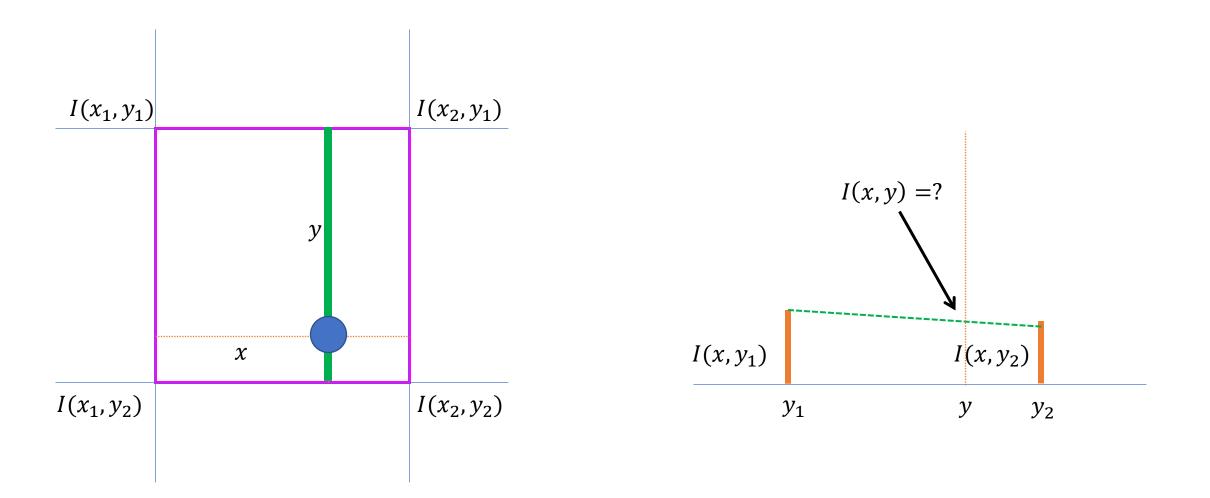


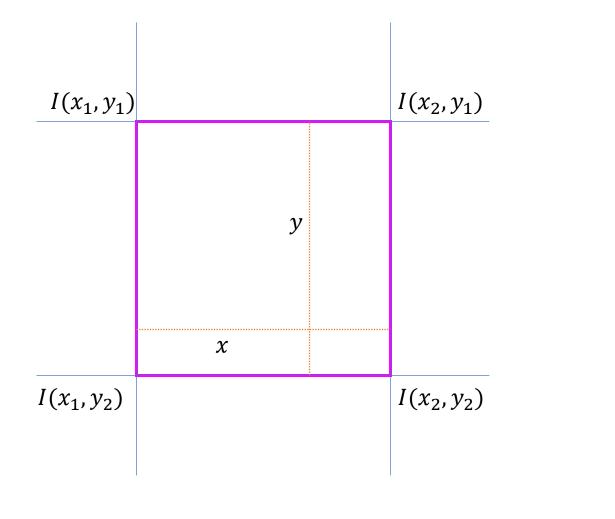
Bi-linear interpolation



Bi-linear interpolation





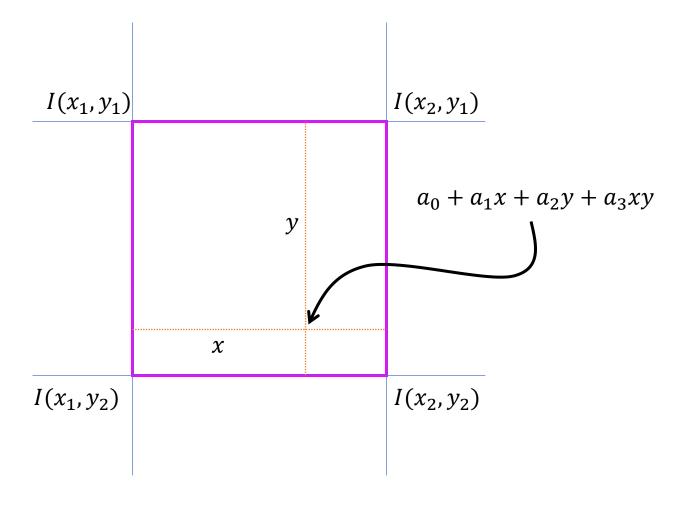


Multi-linear polynomial

$$f(x, y) = a_0 + a_1 x + a_2 y + a_3 x y$$

Then for $i, j \in [1,2]$

 $I(x_i, y_i) = a_0 + a_1 x_i + a_2 y_j + a_3 x_i y_j$

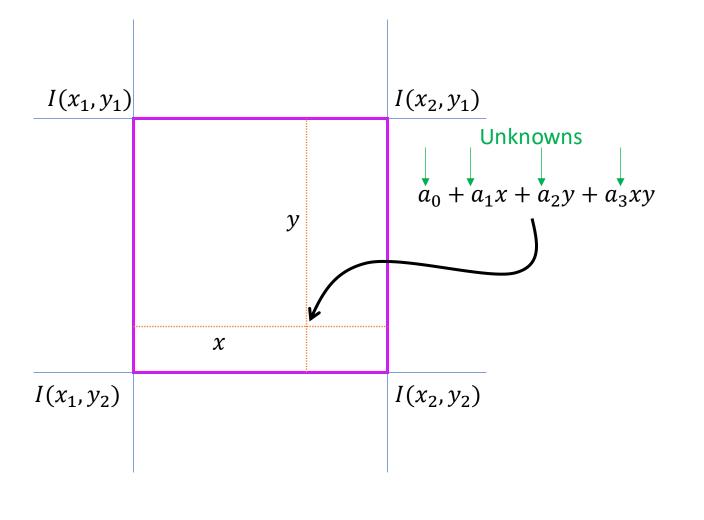


Multi-linear polynomial

$$f(x, y) = a_0 + a_1 x + a_2 y + a_3 x y$$

Then for $i, j \in [1,2]$

 $I(x_i, y_i) = a_0 + a_1 x_i + a_2 y_j + a_3 x_i y_j$

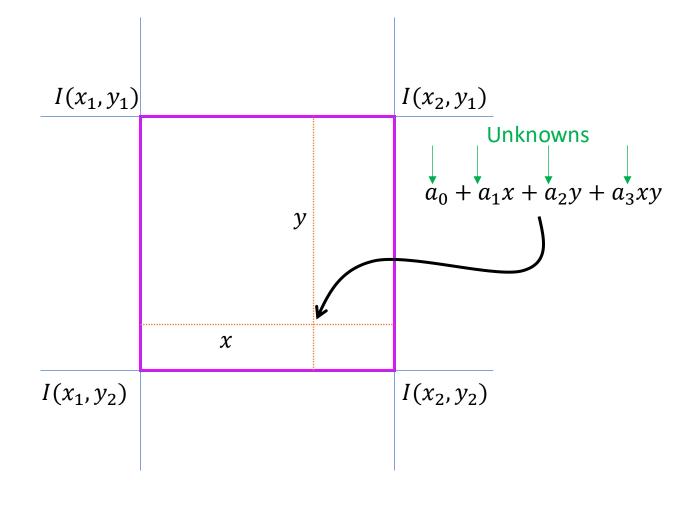


Multi-linear polynomial

$$f(x, y) = a_0 + a_1 x + a_2 y + a_3 x y$$

Then for $i, j \in [1,2]$

 $I(x_i, y_i) = a_0 + a_1 x_i + a_2 y_j + a_3 x_i y_j$



Multi-linear polynomial

$$f(x, y) = a_0 + a_1 x + a_2 y + a_3 x y$$

Then for $i, j \in [1,2]$

 $I(x_i, y_i) = a_0 + a_1 x_i + a_2 y_j + a_3 x_i y_j$

Solve for the unknowns using the following system of equations

$$\begin{bmatrix} 1 & x_1 & y_1 & x_1y_1 \\ 1 & x_2 & y_1 & x_2y_1 \\ 1 & x_1 & y_2 & x_1y_2 \\ 1 & x_2 & y_2 & x_2y_2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} I(x_1, y_1) \\ I(x_2, y_1) \\ I(x_1, y_2) \\ I(x_2, y_2) \end{bmatrix}$$

Bilinear interpolation: Pros

- Smoothing Effect, which helps reduce jagged edges and pixelation.
- Simple to Implement, requires fewer calculation and computational inexpensive as compared to other mathods
- Maintains linearity between the known data points, which can be desirable in certain applications, such as computer graphics.

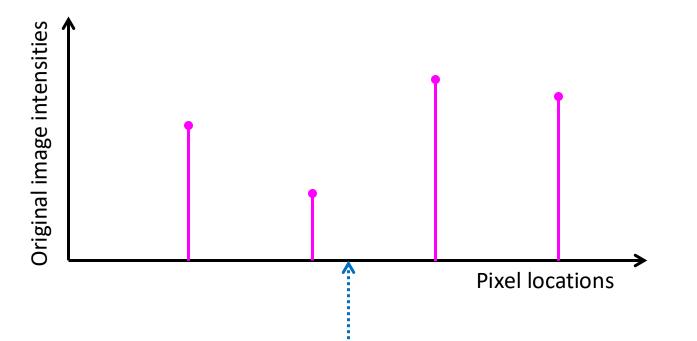
Bilinear interpolation: Cons

- Loss of sharpness and fine details
- Color artifacts
- No consideration for high-frequency components
 - Not suitable for images with intricate patterns or textures
- Not ideal for large scaling
- Limited accuracy and it may not be suitable for photometric applications

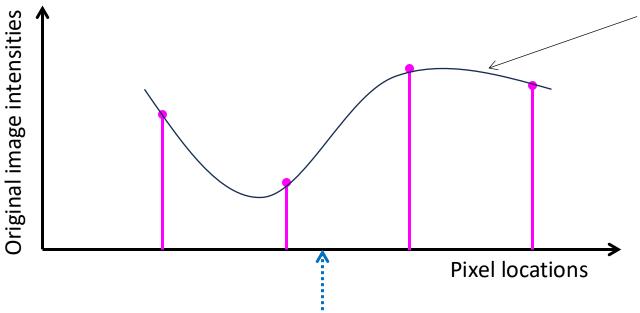
Bicubic interpolation

- Bicubic interpolation is a method for image resizing that calculates new pixel values using the nearest 16 pixels (a 4x4 grid).
- It produces smoother and higher-quality results compared to simpler methods like nearest-neighbor and bilinear interpolation.

Bicubic Interpolation (in 1D)



Cubic Interpolation (in 1D)



Approximate local structure using a cubic polynomial

 $f(x) = ax^3 + bx^2 + cx + d$

This equation has four unknowns, so we need at least four points to fit this model (to the available image intensities)

Bicubic interpolation: Pros

- Better Image Quality:
 - Reduces jagged edges and pixelation, handling edges and gradients effectively.
- Improved Detail Preservation:
 - Retains fine details, ideal for upscaling images.
- Smooth Transitions:
 - Minimizes artifacts like sudden intensity changes, providing a natural look.
- Widely Used:
 - Implemented in many image processing tools, making it a well-established method.

Bicubic interpolation: Cons

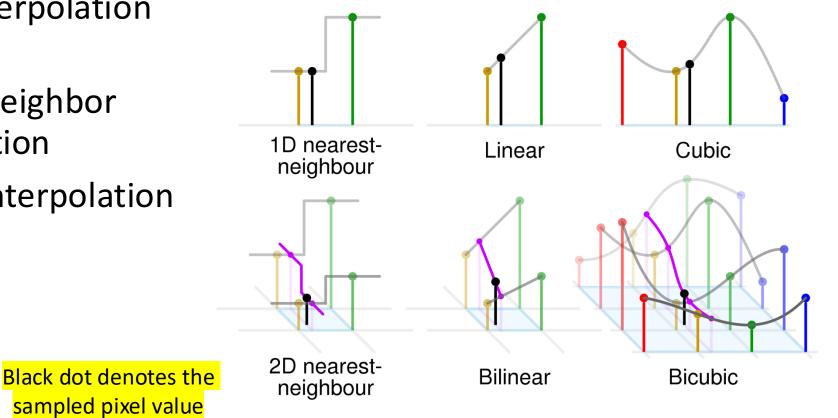
- Slower Performance:
 - More computationally expensive than simpler methods, making it slower on large images.
- Blurring:
 - Can introduce blurriness, especially when scaling down.
- Halo Artifacts:
 - Sometimes causes halo effects around edges in high-contrast areas.
- Over-Smoothing:
 - May smooth out fine details too much during upscaling, leading to a soft image.

Bicubic interpolation: Best use cases

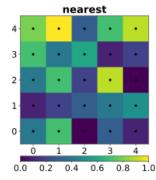
- Moderate upscaling where image sharpness is not the highest priority but smoothness is.
- General-purpose resizing for photographs and images with a balance of speed and quality.

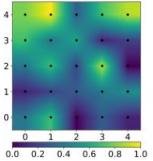
Summary

- Image interpolation methods
- Nearest neighbor interpolation
- Bilinear interpolation



(CMG Le. Wikipedia)





bicubic 3 0 2 3 0.0 0.2 0.4 0.6 0.8

On image interpolation

https://www.menti.com/bltyg9abucso