
1 / 27

Collision Detection
Simulation and Modeling (CSCI 3010U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

 



COLLISION DETECTION

gig

Q How to find the exact time of
collisions

A Binary Search

You are able to go back and forth

in your simulation



2 / 27

Collision Detection
↭ Detect collision, and back up time to find the exact time of

collision
↭ Perform binary search on time to find the exact time of collision

↭ Too slow for many particle systems
↭ For many particle systems, predict the time to collide and

advance the simulation to that time

I
Mbundhii

2 10 miterpartical collision

5
353 I

5
4 5

5



3 / 27

List of collisions
↭ Maintain a list of collisions, ordered on time to collision
↭ Don’t need to re-compute the collision times in each time step,

just look at the first collision on the list and process it
↭ We then compute a new collision time for this particle and add

it to the list
↭ The new first time on the list becomes our new “next collision”

whichof these

fit
A ON particles is

likely to hit

c Nf É
ferstaunday

compute maintain time

to impact F



4 / 27

List of collisions
↭ This approach can save considerable amount of time
↭ Predicting “time to collision” usually assumes that the velocity

is constant, so it is valid for a few time steps only
↭ Only track objects that may collide in the near future

S Vt

t S v

actually not
constant



5 / 27

Collision detection between moving objects
↭ Consider each pair of objects
↭ Use their paths to predict whether or not the objects will

collide in the near future

affair
A
µ
PA

PB
VB

qq.fi
Parametric etof a line x ̅ I If

parameter



6 / 27

Particle-Particle Collision in 2D
Consider two particles A and B with current positions and velocities
(pA, vA) and (pB, vB) living in a 2D world.

↭ Position of particle A after time ω: pA(ω) = pA + ωvA

↭ Position of particle B after time ε: pB(ε) = pb + εvB

↭ Solve ω and ε s.t. pA(ω) = pB(ε) and ω, ε → 0.
↭ If ω = ε, collision!

parameter α

patameter
β

p x PBBa

pA αvA pB pub



7 / 27

Particle-Particle Collision in 3D
↭ In the previous slide, we have used line intersection to see

whether or not two moving particles will collide. Line
intersection is a probability zero event in 3D.

rest
distantines
o

tympanum



8 / 27

Particle-Particle Collision in 3D
↭ We solve to following minimization problem to see if two 3D

particles will collide

d = min
ω,ε→0

↑p(ω) ↓ p(ε)↑2

↭ If d is less than some predefined threshold, estimate time it will
take for the two particles to get to the point of intersection to
see if the two particles will collide



9 / 27

Intersecting lines in 3d
Lines rarely intersect in 3d, so will reframe this problem to
estimating the closest distance between two lines.

Consider the following two lines

(line 1) p = c1 + ωd1

(line 2) q = c2 + εd2

Line p ↓ q must be perpendicular to both line 1 and line 2 when p
and q are closest to each other. Therefore,

dT
1 (p ↓ q) = 0

dT
2 (p ↓ q) = 0

p g
y

if III

defer of dot
product



10 / 27

Intersecting lines in 3d
It follows

dT
1 ((c1 ↓ c1) + ωd1 ↓ εd2) = 0

dT
2 ((c1 ↓ c2) + ωd1 ↓ εd2) = 0

and [
dT

1 d1 ↓ dT
1 d2

dT
2 d1 ↓ dT

2 d2

] [
ω

ε

]

=
[
↓dT

1 (c1 ↓ c2)
↓dT

2 (c1 ↓ c2)

]

Solving the above in a least squares fashion should give us ω̂ and ε̂.

122 2 ER 2 1

A x ̅ 5

x ̅ A 5



11 / 27

Intersecting lines in 3d
Estimated point from line 1

x̂1 = c1 + ω̂d1

and the estimated point from line 2

x̂2 = c2 + ε̂d2.

The estimated intersection point is

x̂ = x̂1 + x̂2
2

Note that (c1, c2, d1, d2, x̂1, x̂2, x̂) ↔ R3. For rays, check ω̂, ε̂ → 0
and for lines, check 0 ↗ ω̂, ε̂ ↗ 1



12 / 27

Collision detection between moving objects
↭ Dealing with uncertainty over time

overtime
the confidence

in

the
positionof

AEGFY 1
particle

diminishes



13 / 27

E!cient collision detection
↭ Spatial partitioning

↭ Size of the grid cells should be several times the maximum
distance that a particle can travel in time step

↭ Each grid cell contains a list of particles
↭ Lists
↭ Hash tables
↭ Arrays

check
for

collisustin
inregion

0 12



Multiresolution

Grids

TreesIffit.am



14 / 27

Collision detection for rigid bodies
↭ Possiblities (Polyhedral objects)

↭ Vertex - Face
↭ Vertex - Edge
↭ Vertex - Vertex
↭ Edge - Edge
↭ Edge - Face
↭ Face - Face

↭ Which of the the above situations are more likely to occur in
practice?

↭ Complex rigid objects can have thousands of vertices, edges
and faces!
↭ Many systems only consider Vertex - Face collisions, claiming

that other 5 options are too rare to consider



15 / 27

Vertex - Face collision

↭ Compute signed distance between a vertex location (point) and
the plane representing the face

↭ If distance is less than or equal to zero, collision!

compute

eq of a
91 or plane

0

an by ez d to

agent bayt eq d



Equation of a plane an by Cz d 0

y
P1 9 91,2

P1
P2 Guys 22

11.02Pz 23143 3

e P I I
S

5 52 P3 z

ñ 5 5

ñ ps d

Myy Mzz d

a b c



16 / 27

Speeding up Rigid Body Collisions
↭ Spatial partitioning
↭ Enclose rigid bodies into simpler shapes

↭ If simple shapes don’t collide then the rigid bodies won’t collide
as well

0 76 boundingEIIII

compute collisions

OBB with the bounding

oriented box

bounding boxes



KEMIIIIA

OBB

E

I

Empty space



17 / 27

Collisions Detetion Between Circles
Two circles collide if the distance between their centers is less than
or equal to the sum of their radii
Example

↭ Circle 1 center = (x1, y1), radius = r1
↭ Circle 2 center = (x2, y2), radius = r2

The distance between their centers is

dcenters =
√

(x2 ↓ x1)2 + (y2 ↓ y1)2.

The two circles are colliding if

dcenters ↗ r1 + r2.



18 / 27

Collisions Detetion Between Spheres
This is a straightforward extension of the “circles case.” Two spheres
collide if the distance between their centers is less than or equal to
the sum of their radii
Example

↭ Circle 1 center = (x1, y1, z1), radius = r1
↭ Circle 2 center = (x2, y2, z2), radius = r2

The distance between their centers is

dcenters =
√

(x2 ↓ x1)2 + (y2 ↓ y1)2 + (z2 ↓ z1).

The two circles are colliding if

dcenters ↗ r1 + r2.



19 / 27

Collisions Detection Between Polygons in 2D
Convex Polygon
A convex polygon is a polygon where all interior angles are less than
180°, and no line segment between two points inside the polygon
extends outside it.

non convex polygon

live inoutside



20 / 27

Collisions Detection Between Polygons in 2D
Test for Convex Polygons

1. Iterate through all vertices of the polygon.
2. Compute the cross product of consecutive edge vectors.
3. Check if all cross products have the same sign (either all

positive or all negative):
↭ All positive: Polygon is convex.
↭ All negative: Polygon is convex.
↭ Mixed signs: Polygon is concave.

1
FI



21 / 27

Collisions Detection Between Polygons in 2D
Separataing Axis Theorem (SAT)
SAT is a method for detecting collisions between convex polygons.

It states:
If two convex polygons are not colliding, there exists at
least one separating axis on which their projections do not
overlap.

If such a separating axis exists, the polygons do not collide.
Otherwise, they must be colliding.



22 / 27

Separating Axes

t.fi get

OVERT



SAT

fI

Normal of every edge forms a separating

axis

Project vertices onto separating axis dot

product

If projections overlap on all separating
planes objects are colliding



23 / 27

Separating Axis Theorem (SAT) - in 2D
↭ Step 1: Find the Separating Axes

↭ Every edge of a convex polygon has a perpendicular normal
vector. These vectors form the set of separating axes.

↭ Step 2: Project Both Polygons onto Each Axis
↭ For each axis, project both polygons by calculating the dot

product of their vertices with the axis. Each polygon’s
projection will be a range(min, max) on the axis.

↭ Step 3: Check for Overlap in Projections
↭ If any axis has non-overlapping projections, the polygons do not

collide. Exit early.
↭ If all projections overlap, the polygons are colliding.



24 / 27

Separating Axis Theorem (SAT) - in 3D
↭ Step 1: Find the Separating Axes

↭ Every edge of a convex polygon has a perpendicular normal
vector. These vectors form the set of separating axes.

↭ Cross-product of every edge combination between two polygons
also form the set of separating axes.

↭ Step 2: Project Both Polygons onto Each Axis
↭ For each axis, project both polygons by calculating the dot

product of their vertices with the axis. Each polygon’s
projection will be a range(min, max) on the axis.

↭ Step 3: Check for Overlap in Projections
↭ If any axis has non-overlapping projections, the polygons do not

collide. Exit early.
↭ If all projections overlap, the polygons are colliding.



faces 6
faces 5

I t.EE iI

Eii i D

axis Δ
separating planners normals 11

edges 12 8
axes

separating plainer frome edges

12 8

ñxñ



25 / 27

Separating Axis Theorem (SAT)
Advantages

↭ Works for any convex shape (triangle, rectangle, pentagon,
etc.)

↭ E!cient for physics engines (early exit on first separating axis)
↭ Scalable to 3D collision detection (extra axes for depth)

Limitations

↭ Does not work for concave polygons (must first decompose
them into convex parts).

↭ Expensive for many polygons (checking multiple axes).



26 / 27

Check out notes on collision response available on the course
web.



27 / 27

Summary
↭ Particle-Particle collision detection in 2D and 3D
↭ Collision detection between rigid bodies
↭ Speeding up collision detection


