Rigid Bodies
Simulation and Modeling (CSCI 3010U)

Faisal Z. Qureshi

http: //vclab.science.ontariotechu.ca

1 OntarioTech

UNIVERSITY

Stoty dins fon
- Mok 9
Fzma

| iy

W e——vdam”ia
W 4

/ -

V'I)dﬂre_ Arndes \
Slake varcaldles
(porihas, velonidy)

77777777

ParmicLee / AN P10

- 20v0 volume

> 7| @7 Ro1 ATIONY

. —

U @
-)GMMWW&»M\OM{}

U Acteben 4 the Lyl

9 g—b\lbmﬂz&a
M—Pqpe,euﬂ' ML
¢ \ —> 2
.nd"
b q)r—aﬁi &“

Rigid Bodies

NN,

'/,'.'-_
8
I
7z /
7’ I.
R
2o
o .2
// ¥
% e v
K ’’
1 N\ /7
TR /
] ~
\ 1 —
\
N
\. - &
B e e
.." Y
e
-
-
~ LAY
~._.- .
\
1
|
I
1
1

Particle

N\ N
- \
y &
, \
! \
i \
i \
’. 1
- . &
: 1
! ol
1 U i 1
1 ! A 1
1 ! 3 /./
] \ A
{/ \
{/ \
\
N ’ ~
7 \ 7
\
1
< 4
s R4

Rigid Body

Particle vs. Rigid Body Dynamics

» State of a particle Aecume 2D

» Position p T I8
» Velocity v %

» State of a rigid body
» Position p &
» Velocity v

» Orientation 6
» Angular velocity w

Coordinate frames

» |x]. is (1,2) in coordinate frame described by e; and e;
» What is |x],, i.e., |x]|, expressed in u; and usy?

frames

/(5'/ 7'\

Coordinate frames

> x = e; + 2e9
> x = [ug]e + afu]e + Blugle

» Note that [x], = («, 8), so we are interested in finding values
of a and §.

Coordinate frames

Coordinate Frames Exercise - Part 1
What is [x],”

Coordinate Frames Exercise - Part 2
What is [x],”

Rigid Bodies in 2D

S @® S|-—o)\

-
— -

pont

Angular Velocity

__do
> w=F

» Units are radians per second
» Radian is the angle subtended by an arc whose length is equal
to its radifus: 0 = %

_inear Velocity at a Point on the Body

> v =rw
\—"

Rigid Bodies in 3D

» Unlike 2D, orientation in 3D cannot be described using any
angle.
» There are many schemes for describing rotations in 3D.
» We will use a 3 x 3 rotation matrix R to describe the rotation
of rigit body. = -
» R is an orthognal matrix
T

» Its columns are orthonormal, i.e., r; r; = 0 if ¢ # j, 1 otherwise,
where r; and r; denotes i and j™ columns, respectively

» R'R=1Iand RR! =1

V2, 4« 6(9-\& | x \
R - /LH An &2'5 ‘j
A ke Ay A ’ T _S

Rotations in 3D

Matrices for rotations about the x, y, and z axes

1 0 0
R.(0) = 0 cosf —sinb

0O sinf coséb

[cosf® 0 sinf]
R,(0) = 0 1 0

—sinf 0 cos 0_

cosf) —sinf 0
R.(0) = |sinf cosf O
0 0 1

Rotations in 3D

It is possible to describe a rotation as a sequence of three rotations
around XY Z coordinate frame axes attached to the moving body

Y Y
‘6
I—»)(A ¥; QL Y-
. z - '7\)(*JV\AX
/ 7 VA
(@) R.(v)

i

z‘); Ry () R, :

Then rotation matrix R = R, (v)R.(0)R,(5)

Here, XY Z coordinate system that is attached to the body moves,
while the xyz system is fixed. The rotations are with respect to the
XY Z coordinate system. It is also possible to define these

(elemental) rotations about the axes of a fixed coordinate system
TYZ.

Rotations in 3D

Another way to represent a rotation in 3D is to use the axis-angle
convention.

The matrix of a proper rotation R by angle 6 around the axis
u = (ux7 uya uz)

cos@—l—ui (1 — cos9) UgUy (1 —cosB) —ursin® uzuz (1 —cosB) + uy sin 6
R = [uyug (1 —cosf) 4+ u, sin6 cos@—}—uz (1 — cos6) UyUy (1 — cosf) — uy sin 6

Uz Uz (1 —cosf) —uysind uzuy (1 —cosf) + uy sin 6 cos@—|—u§ (1 — cos0)

Rotations in 3D

» We will use a 3x3 rotation matrix R
» We need to find the relationship between angular velocity and
rotation matrix.

We will return to this later.

Slede venial ¢o
Pe R
o 2

\

Equations of Motions for Rigid Bodies

Force acting on a Rigid Body p—

» Net force acting on an object is the rate of change of its linear
momentum.

Equations of Motions for Rigid Bodies
Torque acting on a rigid body

» Net torque acting on an object (about point 0) is the rate of
change of its angular momentum .

Torque Qewns 0y N l;e;?m

example, clockwise or counter-clockwise):

» Torque (in thi
TkFdxF

» When force passes through the center of mass (discussed in the
following slides), the associated d vector is zero; therefore, this
force produces no torque or rotational effect

Sl

Cenhter of mass

Computing Torque

[Given pand F
Land q

p-((@q—p)'h)h

o

Line along which force is applied—]

e

d=(p—((a—p)'n)n

Confirm that d“h = 0

This is because these vectors
are perpendicular to each
other

| Force F
Acts at the center of
mass e

Torque 7=d x F

' Counter-clockwise along
torque vector

.

_J

Center of mass

-

: :] ° s
Given p and F T —
and q Y (a—p)'n Force F (((1 — 0

— (g - p)Th) & N

p-((a-p)a)n .

Line along which force is applied—] // A! 0= 0l
" 0 | \d —a-P
d=(p-((a-p)'0)h) —q | Rigidbody

Confirm that d”h = 0
This cause these vectors
are perpendicular to each
other

\ N
{Force F | Center of mass

Acts at the center of
i o

Torque T=d x F

Counter-clockwise along
torque vector

Center of Mass (COM)

» The center of mass is the mean location of all the mass of the
body.

» The center of mass r is defined as

/ pla,y, 2V
/ p(z, y, 2 [y3V

where p(x,y, z) is the density at point (z,y,2). M is the total

mass of the object. Also, density = >

s

S

Ty
-_
T

World frame

COM as the origin of the body coordinate frame

» Selecting COM as the origin of the body coordinate frame
greatly simpifies the equation of motions

» Any force applied to (or passing through) the COM doesn't
induce rotation.

Force 2 » Force 1 (translation only)

» Force 2 (translation only)
» Force 3 (both translation &
rotation)

Force 1

rce 3

20 / 46

COM - Discretization

Consider a rigid body composed of N point masses m,; located at
positions (x;,;, 2;), respectively, in the world coordinate system.
Here i € [1, N].

Then the center of mass of this rigid body in the world coordinate
system is

o Tz
& g Ty (Z mzyz> / (Z mz)

Z"i"i = (Y00) + (10)5)+ (3) (-1)
- o4 So = 2%

23

Sy s (LS + (D) + (3)(8)
’ = SAFA 24

= 99
' L2
Ay = %VM’M/Z:M{ - 4 = LA
)

4’3 S /T .

COM - Exercise

Compute the center of mass of a rectangular brick with point
masses at its 8 vertices. Assume that vertex 1 is sitting at (1,1,1).
The values of point masses are m;, where 7 € [1,8|.

Let's assume that = 4, h=1,d=2 and m; = 1 to get things
started.

COM - Exercise - Python Code

import numpy as np

H -—--—- G
/| /1

J/E--—/F

// !/

D -—————- c/

|/ 1/

A ————- B

m = np.ones(8)

r = np.empty((3,8))
1 =4

h=1

d =2

r[:,0] = np.array([1,1,1])

T[,11 = r[:,0] + np.
.array([1,h,0])

r[:,2] = r[:,0] + np
r[:,3] = r[:,0] + np.
r[:,4] = r[:,0] + np.
r[:,5] = r[:,4] + np.
r[:,6] = r[:,4] + np
r[:,7] = r[:,4] + np

print('m:\n', m)
print('r:\n', r)

array([1,0,0])

array([0,h,0])
array([0,0,-d])
array([1,0,0])

.array([1,h,0])
.array([0,h,0])

H OH H H H HF HH
mQTmoQomes

M = np.sum(m) # Total mass
print('M:\n', M)

m_tmp = np.tile(m, (3,1))
print(r * np.tile(m, (3,1)))

center_of_mass =
np.sum(r * np.tile(m, (3,1)), axis=1) / M
print('center of mass:\n', center_of_mass)

COM - Example - Program Output

m:
[1. 1. 1. 1. 1. 1. 1. 1.]

r:
[[1 S} 5 1. 1 5 5 1.]
[1 1 2 2. 1. 1 2 2.]
[1 1 1 1. -1. -1. -1. -1.]]

M:

8.0

[[1. 5 &) 1. 1. b S} 1.]
[1 1 2 2. 1. 1 2 2.]

[1. 1. 1. 1. -1. -1. -1. -1.]1]
center of mass:
[3. 1.5 0.]

Inertia Tensor

Inertia tensor provides a concise description of the mass distribution
around the center of mass. p(x,y, z) denotes density at

center-of-mass centered point (z,y, 2). Recall density = -2

volume

Lie = | p(z,y,2)(y* + 22)dV

Lyy p(x,y,z)(zz —I'xz)dv

I~
|
|
S
S
S~
— S

I:U:E _Ixy _I.CUZ [ZZ /0(513, Y, Z) (332 + yz)dv

p(x,y, z)xydV

|
.
8
.
<
-
'\
N
<
|
@’\1
S
|

3
I\

I
-
8

I

p(z,y, z)xzdV

p(z,y, 2)yzdV

S~
'\

|
-
<

|

Inertia Tensor - Discretization

Consider a rigid body composed of N point masses m,; located at
center-of-mass centered positions (x;, y;, z;), respectively, in the
world coordinate system. Here ¢ € |1, N].

I — Iy —Iy. | I, = Zmz(x? + y?)
I=1 —lyz Iy Ly i
L., L, L. | Loy = Iyw = > mzy

Inertia Tensor - Exercise

Compute the center of mass of a rectangular brick with point
masses at its 8 vertices. Assume that vertex 1 is sitting at (1,1,1).
The values of point masses are m;, where 7 € [1,8|.

y

Let's assume that [=4, h=1, d =2 and m; = 1 to get things
started.

Inertia

Tensor - Exercise - Python Code

continued from the previous example

rp = r
print ('

I = np.
1[0,0]
I[1,1]
1[2,2]
1[0,1]
1[0,2]
I[1,2]
print ('

- np.tile(center_of_mass , (8,1)).T
rp:\n', rp)

empty ((3,3))

np.sum(np.multiply(np.power(rpl[il,:],2) + np.power(rp[2,:]1,2), m))
np.sum(np.multiply(np.power(rpl[2,:],2) + np.power(rp[0,:],2), m))
np.sum(np.multiply(np.power(rpl[0,:],2) + np.power(rpll,:],2), m))

I[1,0] = np.sum(np.multiply(np.multiply(rp[0,:]1, rpl[i1,:1), m))

I1[2,0] = np.sum(np.multiply(np.multiply(rp[0,:]1, rp[2,:1), m))

I1[2,1] = np.sum(np.multiply(np.multiply(rpl[l,:]1, rp[2,:1), m))
I:\n', I)

Intertia Tensor - Exercise - Program Output

Irp:
[[-2. 2. 2. =-2. =-2. 2. 2. =-2.1]
[-0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5]
[1. 1. 1. 1. -1. -1. -1. -1. 1]

I:

Inertia Tensor in the Body Coordinate Frame

>

vVvVvyvyy

The inertia tensor I that we just computed is expressed in the
e

world coordinate frame. Consequently it changes as the
orientation of the rigid body changes. B
We can express the inertia tensor in the body coordinate frame.
We refer to inertia tensor in the body coordinate frame as I,y .
Io4y doesn’t change as the orientation of the body changes.
Ipody is diagonal, i.e.,

Iiy 0 O
Ibody — 0 I O
0 0 I33 |
Inverse of Ip,qy:
1 fu (1))
Ibody — 0 Tos 0
0 0 =
L 33 4

Computing I,

Option 1
Diagonalize 1

» Compute eigenvectors and eigenvalues of I

» Eigenvalues form the diagonal matrix I,
» Eigenvectors form the 3-by-3 rotation matrix R that describes

the orientation of the rigid body
» This is the preferred approach

Option 2
Use 3-by-3 rotation matrix R that describes the orientation of
the rigid body

> 1,4, = RTIR

Inertia Tensor - Rotated Body Example - Python Code

Continued from previous example
from scipy.spatial.transform import Rotation as R

rot_mat = R.from_euler('y',45, degrees=True).as_matrix()
print('rot_mat:\n', rot_mat)

Note: 1) rp; 2) center of mass; and 3) overwriting r
r = np.dot(rot_mat, rp) + np.tile(center_of_mass, (8,1)).T
print('rotated_r:\n', r)

center_of_mass = np.sum(r * np.tile(m, (3,1)), axis=1) / M
print ('center of mass:\n', center_of_mass)

rp = r - np.tile(center_of_mass , (8,1)).T
print('rp:\n', rp)

I = np.empty((3,3))

I[0,0] = np.sum(np.multiply(np.power(rpl[i,:],2) + np.power(rp[2,:]1,2), m))
I[1,1] = np.sum(np.multiply(np.power(rpl[2,:],2) + np.power(rp[0,:]1,2), m))
I[2,2] = np.sum(np.multiply(np.power(rp[0,:],2) + np.power(rpll,:]1,2), m))
I[0,1] = I[1,0] = np.sum(np.multiply(np.multiply(rpl[0,:], rp[l,:1), m))
I[0,2] = I[2,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[2,:]1), m))
I[1,2] = I[2,1] np.sum(np.multiply(np.multiply(rpl[i,:], rp[2,:1), m))
print('I:\n', I)

Computing I_body using rotation matrix
I_body = np.dot(np.dot(rot_mat.T, I), rot_mat)
print('I_body:\n', I_body)

Computing I_body using eigenvalues and eigenvectors
W, Vv = np.linalg.eig(I)

print('eigenvalues:\n', w)

print('eigenvectors:\n', v)

Inertia Tensor - Rotated Body Example - Program Output

rot_mat:
[[0.70710678 O. 0.70710678]
[0. 1. 0.]
[-0.70710678 O. 0.70710678]]
rotated_r:

[[2.29289322 5.12132034 5.12132034 2.29289322 0.87867966 3.70710678
3.70710678 0.87867966]
[1. 1. 2. 2. 1. 1.
2. 2.]
[2.12132034 -0.70710678 -0.70710678 2.12132034 0.70710678 -2.12132034
-2.12132034 0.70710678]1]
center of mass:
[3. 1.5 0.1
rp:
[[-0.70710678 2.12132034 2.12132034 -0.70710678 -2.12132034 0.70710678
0.70710678 -2.12132034]
[-0.5 -0.5 0.5 0.5 -0.5 -0.5
0.5 0.5]
[2.12132034 -0.70710678 -0.70710678 2.12132034 0.70710678 -2.12132034
-2.12132034 0.70710678]1]
I:
[[22. 0. -12.]
[0. 40. 0.]
[-12. 0. 22.]]
I_body:
[[3.40000000e+01 0.00000000e+00 8.45096405e-15]
[0.00000000e+00 4.00000000e+01 0.00000000e+00]
[7.79029649e-15 0.00000000e+00 1.00000000e+01]]
eigenvalues:
[34. 10. 40.]
eigenvectors:
[[0.70710678 0.70710678 O.]
[o. 0. 1.]
[-0.70710678 0.70710678 O. 1]

Inertia Tensor

>

>

Inertia tensors are available for many canonical objects:

rectangles, circles, spheres, etc.
Efficient algorithms exist to compute inertia tensor, center of
mass, body coordinate frames a given polygonal model of an

object
Many tools exist to construct polygonal models of 2D /3D rigid
objects v S v

Body coordinate frame

Attach a coordinate frame to a rigid body

» Origin: center of mass(defined in the
Q;X world frame)

» Axes: defined in the world coordinate
frame by a 3-by-3 rotation matrix R.
Columns of R define the z, y and z axes

pbody

R oriepiati
: - of the body coordinate frame
Coie » Inertia tensor Iq, is constant and
ragoral In this fram
x translation
oo /) » From body coordinate frame to world
(coordinate frame
(x4,%) (33) (3v) (3w)
Pworld = prody - X
> %
Tl (2x()

[R (Feraa - %)

World and Body Coordinate Frames

World coordinate frame

» Collision detection and response
» Display and visualization

Body coordinate frame

» Compute quantitites such as inertia tensor once and store them
for later use.

Rigid Body Dynamics

State variables

Constants

Derived quantities

Position X | 1 by 3 vector
Orientation R | 3 by 3 rotation matrix
Linear Momentum P | 1 by 3 vector

Angular Momentum L | 1by 3 vector

Mass m scalar

Inertia tensor Ipoay | 3 by 3 matrix (in body frame)
Linear velocity v 1 by 3 vector

Angular velocity W 1 by 3 vector

Inertia tensor 71 3 by 3 matrix (in world frame)
Total force F 1 by 3 vector

Total torque T 1 by 3 vector

Rigid Body Dynamics

Linear effects

> dx/dt =v
» dP/dt =F
» v=P/m

Angular effects
» dR/dt = w*R, where

0 — Wy
w =1\ w, 0
Wy Wy
» dL/dt =N
» w=1"1L

— —1
> I"! =RI, , R"

Rigid Body Dynamics

// x - position // dx/dt = v odeSolver.step();
state[8] = x[0]; rate[@] = v[e]; /] x
state[1] = x[1]; rate[1] = v[1]; x[@] = state[0];
= ; = . [1] = state[1];
state[2] x[2]; rate[2] = v[2]; §[2] C sateel
// R - orientation // drR/dt = w* R // R
state[3] = R[@][0]; double[][] Rdot = E[g][g] - szze[i]f
state[4] = R[1][@]; mult(star (omega), R); REZ%E@% ; :tat:ES%;
state[5] = R[2][0]; rate[3] = Rdot[@][0]; R[@][1] = state[6];
state[6] = R[@][1]; rate[4] i R:ot[l][a],: :EHEH : :EE:E;%
state[7] = R[1][1]; rate[5] = Rdot[2][0]; R[0][2] = state[9];
state[8] = R[2][1]; rate[6] = Rdot[@][1]; R[1][2] = state[10];
_ . - . R[2][2] = state[11];
state[9] = R[@][2]; rate[7] = Rdot[1][1]; R = or‘thoanmaiize(R);
state[10] = R[1][2]; rate[8] = Rdot[2][1];
state[11] = R[2][2]; rate[9] = Rdot[0][2];
rate[10] = Rdot[1][2]; /7P
P[@] = state[12];
// P - linear momentum rate[11] = Rdot[2][2]; P[1] = state[13];
state[12] = P[@]; P[2] = state[14];
state[13] = P[1]; // dP/dt = force /L
state[14] = P[2]; rate[12] = force[@]; L[e] = state[15];
rate[13] = force[1]; L[1] = state[16];
L[2] = state[17];
// L - angular momentum rate[14] = force[2];
state[15] = L[@]; Iinv = mult(R, mult(IbodyInv, transpose(R)));
state[16] = L[1]; // dL/dt = torque omega = mult(Iinv, L);
state[17] = L[2]; rate[15] = torque[0@];
rate[16] = torque[l];
// t - OSP needs it rate[17] = torque[2];
tate[18] = 0.0
e // dt/dt = 1 Let ODE solve the state and
rate[18] = 1; then copy the state back to
Init: Flatten state variables Rate[] encodes 15t order our statevariables X, R, L

into a state vector ODE for our system and T.

Rigid Body Dynamics: Numerical Considerations

» QOver time numerical errors accumulate in rotation matrix R
» This effects our computation of I and w
» Orthonormalize R after every timestep

Orthonormalization

1. Normalize Ry
2. R3 = R; X Ry (normalize Rg)
3. Ra = R3 x Ry (normalize Ry)

Here R,; represent the i-th row of matrix R
Errors were shifted in the matrix

Representing Rotations

» We chose to represent rotations as 3-by-3 rotation matrices
» Quaternions can be used to represent rotations as well

» Most rigid body dynamics systems use quaterions
» See Ch. 17 of the textbook

Representing Rigid Bodies

» A rigid body has a shape that does not change over time

» It can translate through space and rotate

» A rigid body occupies a volume of space

» The distribution of its mass over this volume determines its
motion or dynamics

Shape representation

» Shape representation is studied extensively in computer
graphics and some areas of mechanical engineering and
mathematics

» There are many ways of representing shape, each with a
different set of advantages and disadvantages

» We will stick to polygons

Shape

>

>

Representation using Polygons

The surface of the object is represented by a collection of

polygons
The polygons are connected across their edges to form a
continuous surface

In order to have a well behaved representation we need to
constrain our polygons

First all of the polygons must be convex, note that we can
always convert a concave polygon into two or more convex ones

Convex Polygon Concave Polygon Non-planar Polygon

N A

Self-intersecting Polygon Triangle

Shape Representation using Triangles

» We will stick to triangles

» Any convex polygon can be converted to a collection of
triangles

Advantages

» We are only dealing with one type of polygon, a uniform
representation

» Triangles are the simplest polygon, makes our algorithms
simpler

» Many modeling programs allow us to construct polygonal
models

» Easy to display

» Many efficient algorithms exist for manipulating triangles

Disadvantages

» Not a compact representation
» Not a good approximation for curved surfaces

Other Types of Dynamics

» Articulated figures
» Rigid bodies connected by joints and hinges
» Used to model the dynamics of human figures
» Vehicle dynamics used to model the dynamics of various kinds
of vehicles
» Deformable objects
» Cloth, soft toys, etc.

» These are more complicated than what we have seen so far

Readings

» Ch. 17 of the textbook

» C(Classical Mechanics (3rd Edition) by H. Goldstein and C.P.
Poole Jr.

*T F:—Ma' ‘AJ(9 < .8':
é‘ﬁs—a (M)
dk
v
Ak

@ T
%4V Vy

