Bouncing ball

Collision detection

1. Approximate time to collide t. =
2. Set x =0 and v = —v(t + t;)
» Flip v to indicate that the ball is now going back up again

Problem



Bouncing ball

Collision detection

. . _ .
1. Approximate time to collide ¢, = =

2. Set x =0 and v = —v(t + t;)
» Flip v to indicate that the ball is now going back up again

Problem
v is larger than had we calculated t. exactly right (that’s because

the particle is under constant acceleration). Consequently energy is

not conserved.



Bouncing ball

» Use the Law of Conservation of Energy to compute the velocity
of the ball when it touches ground.

» The ball was released at height 1. We know the total energy of
the system, which is mgh. At the start the kinetic energy is 0.

» When the ball touches the ground, its potential energy reduces
to 0. Since the total energy remains the same, all of its energy
is now kinetic energy.

1
—mv? = mgh

2
v =+/2gh

i.e., set x = 0 and v = —y/2gh at collision time.
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Bouncing ball

= conservation of energy = 2] S |
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2D elastic band

Simulate a ball (point mass) attached to the origin via an elastic
band (or a spring sitting in a plane).

» We assume that the rest length of the band is 0.
» Hook's law describes the relationship between the extension of
the band and the force it applies on the attached ball

Hook's law in 1D

F = —kzx,

where x is the displacement from the rest length (in this case 0),
and k is the spring constant for the elastic band. F' is the force on

the ball.
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2D elastic band

Option 1
» Use Hook's Law in 2D

Fy
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2D elastic band

Option 2

Replace 1 2D elastic band with 2
1D elastic bands. The first band

sits along the x-axis; whereas, the
second band sits along the y-axis.

2 elastic bands
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2D elastic band

Add a damping force that is proportional to the velocity of the ball

Model N ' .
X

F,=—kx — cv,

dx

dE

F, = —ky — cv, \cdfi%‘
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2D elastic band

Add a damping force that is proportional to the velocity of the ball
Model

F, = —kx — cv,

F,=—-ky—cv, - %3
e
How many state variables? ij

5 = 2 for positions, 2 for velocity and 1 for time

Notice that we are consider t as a state variable as well. This is not
exactly right, but it makes for easier implmentations.



2D elastic band

Interaction

» User interacts with the ball by dragging it to a new location.
» Dragging to the new location changes the x and y extensions of
the elastic band, effectively changing the forces acting on the

ball.
» This is similar to grasping a real ball attached to a spring, and

then letting go of the ball. /' R;zbg’éé
/ -
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Mass-Spring systems in 3D

Consider a spring with rest length [ and spring constant k. The
spring is connected at two point masses located at p, = (%4, Ya, 2a)
and pp = (p, Yp, 2), respectively. Our goal is to estimate the
spring force exerted on these masses.

y ——r Mass a

v (2, Y, 2p)

e
U\LO‘NS \D\_/\ .(wa,ya,za)

4 N

lrest
Spring is extended, it pulls
M both point masses towards
W each other. Both masses experience

the same amount of force.
Rest length (no force).

Spring is compressed, it pushes
both point masses away from

each other. Both masses experience
the same amount of force.

. )
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Spring Deformation and Axis 4‘% P = (xuyy, 2D

: : _ 0
Spring axis vector: 0= (% e, 2a)

V = (xb — Lay, Yb — Ya, <o — za)

Current length of the spring:

lcurrent = HVH — \/(ZEb — xa)z + (yb — ya>2 + (Zb — Za>2

[ S

Deformation: x  whew expanded
‘i_ = lcurrent — lrest -  uhew MM

The deformation is positive if the spring is extended, and it is
negative if the spring is compressed.



Hook's Law
Unit-vector along spring axis:

1

V= (%y = Ta> Yo — Ya, 26 — Za)

lcurrent

Use the unit vector v to compute force direction. Recall that this
vector points towards p;. If the spring is extended, the mass at
location pp will experience a force in the direction of the mass at

location p,. Therefore, the spring exerts the following force on the
mass at location p:

Jon point mass at p, — —kdv

This expression also works when the spring is compressed. When the

spring is compressed, d is negative. Therefore, the force on mass at
pp is along V.



Hook's Law

Similarly, the force on the mass at location p, is

fon point mass at pg — +kdv.

This is just the opposite of the force on mass at p

«0, *"o ga
v
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Projectile motion

Here ~ is the friction constant,
is the mass of the particle, and

This model doesn’t take into
account the effects of earth’s
ravitational field.

is the acceleration due to gravity.

Downward force
due to gravity

Vv



Projectile motion

Gravitational force between two masses M and m with is given by
Newton's Law of Universal Gravitation

GM

F — ,
(R+y)?

where R + y is the distance between their centres. GG is the
gravitational constant.

G =6.674 x 1071 N(m/kg)?

The value of g is merely a simplification given by

GM
9= o



Projectile motion

To model a projectile near the surface of the earth we use

/! /

mx = —Yx
n__ I GM
PoR CES

Unlike previous models that you have seen in this course, the above
equations have no analytical solution. You'll have to solve them
numerically.

Stake varioldes: %Y, N, ‘na



2,2
ResT LenGrH = B +4" = €
CupeenNT  \ewoTH = | S 37 = cr'l{‘*‘(" = J
DECORMATION = Q&T’q —S)

S

r L WO (&)




Free-falling particle

FdT y » Force acting on a particle of mass m falling under
v gravity is

l_mg F = —mg + Fd7

where F}; is the drag force experienced by the
particle as it moves through the air.

» [, is a velocity dependent drag force. It increases
with velocity and at some point, it will become
equal to the mg, i.e., F; = mg. The velocity at
which this occurs is referred to the terminal
velocity of the particle.




Free-falling particle

FdT y » Force acting on a particle of mass m falling under
v gravity is
il_mg F = _mg_|_Fd7

: where F is the drag force experienced by the
particle as it moves through the air.

» [, is a velocity dependent drag force. It increases
with velocity and at some point, it will become
equal to the mg, i.e., F; = mg. The velocity at
which this occurs is referred to the terminal
velocity of the particle.

» Once terminal velocity is achieved the particle
experiences 0 net force. The particle still
continues to fall at a constant velocity. Why is
that?




Free-falling particle

Terminal velocity

The velocity at which the motion of an object through a fluid is
constant due to the drag force exerted by that fluid.

Terminal velocity depends upon both the particle and the medium
through which it is moving. ‘




Example: Falling pebble

Consider the fall of a pebble of mass 1072 kg. The terminal velocity
of this pebble is 30 m/s.

» How long with it take for this pebble to achieve terminal
velocity?

» How much distance will this pebble cover before it achieves
terminal velocity?

Observation: The pebble will cover around 50 m to achieve the
terminal velocity. This will take around 3 s.

So if we are dealing with a pebble simulation across these distances
(or times), we need to take into account terminal velocity.




Example: Falling pebble

Takeaway: even when modeling simple systems, such as a free
falling particle, we need to carefully evaluate the conditions so
as not to miss important effects.




Describing drag in terms of terminal velocity

» Linear drag P

F14=C1v =mg—
U1,t

» Quadratic drag

V1.t

2
Fy g = Cov? = mg (v)




Modeling a falling coffee filter
Sketch

» Observe a falling coffee filter and record positions vs. times.

» Estimate velocities and accelerations via finite differences.

» Estimate terminal velocity. Recall that the object falls with
constant velocity once terminal velocity is achieved.

» |dentify the relationship between acceleration and velocity. Is it
linear or quadratic?

» Right down the equations taking into account your findings.

» Run the simulation and see if it matches your observations.



Modeling a falling coffee filter

>

>

Observe a falling coffee filter and
record positions vs. times.
Estimate velocities and
accelerations via finite differences.
Estimate terminal velocity. Recall
that the object falls with constant
velocity once terminal velocity is
achieved.

|dentify the relationship between
acceleration and velocity. Is it linear
or quadratic?

Right down the equations taking
into account your findings.

Run the simulation and see if it
matches your observations.

//Falling coffee filter
//Time (s )
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Modeling a falling coffee filter

Takeaway: it is sometimes possible to infer dynamics from
empirical data



Simulating multiple objects

» So far we have simulated single objects
» Now we discuss how to simulate multiple objects?

» The number of objects is a parameter for the simulation.

P




Simulating a collection of balls in a square

vVvvyVvyyvy

Balls move in 2D

Random initial positions and velocities

Balls move under the influence of gravity

Balls bounce off the walls

Balls pass through each other (i.e., no collisions between balls)
No friction

- /
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Simulating a collection of balls in a square

Question 1

Say we are interested in simulating n balls in a square. What is the
state size of our simulation?

[ ————

Question 2

How do we set up the initial state for our simulation, i.e., the initial
locations and initial velocities for each ball?

1

ReTeoron  Shmpuny.




Simulating a collection of balls in a square

Question 1

Say we are interested in simulating n balls in a square. What is the
state size of our simulation?

Answer 1

4n, (x,y) locations and (v, v,) velocities for each ball.

‘._\/-\/ —_— e

Question 2

How do we set up the initial state for our simulation, i.e., the initial
locations and initial velocities for each ball?



Simulating a collection of balls in a square

Question 1

Say we are interested in simulating n balls in a square. What is the
state size of our simulation?

Answer 1

4n, (x,y) locations and (v, v,) velocities for each ball.

Question 2

How do we set up the initial state for our simulation, i.e., the initial
locations and initial velocities for each ball?

Answer 2

Random positions and velocities.

—_——__—~—



Simulating a collection of balls in a square

What are we missing in this simulation?

» Not handling collisions between balls

» If only a few balls in a very large square, ball-ball collisions may
be rare event.

» If a lot of balls crammed in a small space, we can't really ignore
ball-ball collisions.



Ball-ball collisions

» Ball-ball collisions are difficult to do efficiently.

» Unlike ball-wall collisions, where only one object is moving, in
ball-ball collision, both objects are moving.

Naive approach

» At each time step, inspect each pair for possible collision.
» For n balls this leads to n? inspections.
Other things to consider

What if three balls collide with each other at the same instant?
What if n balls collide with each other at the same instant?



Object-object collisions

» Efficient collisions between multiple objects is very challenging
» Most simulations only consider these when absolutely necessary

» Gas molecules are small, so when simulating low-density gases in
large volumes, inter-molecules collisions are sometimes ignored.



What other things have we ignored in our simulation
containing multiple balls in a square?

Brainstorm



What other things have we ignored in our simulation
containing multiple balls in a square?

» Ball-wall collisions ignore the effects of impact on the wall (and
the balls)

» |f the balls were ball bearings, and the walls were made of thin
aluminum then each collision would dent the wall.

» The walls will get bent out of shape over time.

» How would you model walls that bends overtime? This require
some very complicated physics, large computational power, and
sophisticated numerical techniques.

» We also didn't model the color of the balls

» This would be of interest if we are intrested in light bounces or
heat transfer.



Guidlines

» We need carefully identify what really needs to be modeled and
simulated.

» We can make simulations arbitrarily complex by considering
more things.

» This makes it harder to produce simulations.
» Simulations will be less efficient.
» Simulations might become less useful.

» \We need to know where to draw the line.

Correctly determining the applications of the simulation is an
important first step in getting the model right



Summary

» Input, output and state variables
» Differential equations are used to model the behavior of state
variables
» Numerical solvers for solving differential equations
» Good numerical solvers really only exist for degree 1 differential
equations.
» Transform higher order differential equations to multiple
first-order differential equations.
» This introduces extra state variables



Summary

» Use of indirect means to determine whether or not our
simulation is correct.

» \We used our knowledge of the law of conservation of energy to
identify the problem with our simulation

» Interactions
» Projectile motion
» Our first encounter with an ODE that has no analytical solution

» Drag
» Terminal velocity

» First exposure to infering dynamics from empricial data



Summary

Simulating multiple objects

» How to model the system?

» How to manage state space?
» Performance

» Problem set up or initialization
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