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Discrete Event Systems: Simulating a computer network

I Network tra�c: number and types of packets
I Switch capacity
I Processing at each node (switch)
I Network performance: throughput and latency

Things to consider

I Packet generation
I Time it takes for a packet to travel between two nodes
I Probability of lost packets
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Measuring performance

Throughput

I The number of packets (or bytes) that move through the
network in a fixed period of time (usually second)

Latency

I The time for a packet to get from its source to its destination
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Discrete Event Systems: Web services

I How many computers and their capacity
I Number and types of web requests
I Service times
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Discrete Event Systems: Operation Research

I Discrete event simulations are often used in business and
operations research
I Banks, e.g., number of tellers and ATMs required at a bank

branch
I Manufacturing, e.g., the best configuration for a factory floor,

the optimal mix of machines, etc.
I Customer service, e.g., call centers, number of operators, etc.
I Transit systems, e.g., bus routes, number of buses, length of

routes, etc.
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Discrete Event Simulations

Communicating ideas and presenting results to assist decision
making
Unlike the simulations that we have seen so far (in this course):

I Questions tend to be more complex
I Emphasis on communicating results
I Explore alternate models
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Example: Key Messages

I Bank customers will be unhappy
I This factory configuration will increase our profit margin
I Transit wait times are too long
I This process will result in an unreliable product
I We need this many more computers to service our South

American market
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Anatomy of a Discrete Event Simulations

I Entities
I Variables
I Resources
I Queues
I Statistics
I Events
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Entities

I Entities: these flow through the simulation
I Network packets, buses, bank customers, etc.

I Entities have types and attributes
I Network packet, for example, is an entity type
I An attribute might be the time a particular network packet has

stayed in the simulation. Attributes are not shared between
di�erent instances of an entity.

I Entity creation and destruction
I Processing entities
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Variables

I Current clocktime
I The average time required to process a customer request



11 / 46

Resources

I Resources are something that is required to process an entity
I In the bank simulation, bank tellers are a resource
I In the network simulation, the switches are resources

I When an entity is being processed it seizes one or more
resources and doesn’t release them until it is finished

I There may be more than one unit of a given resource, so
several entities can be processed in parallel
I There may be more than one unit of a given resource, so several

entities can be processed in parallel
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Queues

I Each resource, or group of similar resources will have a queue,
this is where entities wait when there isn’t a resource to
process them

I Queues are typically one of the main things we are interested
in, we want to know how long an entity has to wait for service
I In the bank example, if the queue time is too long the

customers will not be happy, so we need to accumulate the
average queue length and maximum time in queue
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Statistics

I A discrete event simulation will accumulate a large number of
statistics

I For entities we are interested in
I The time they spend in the system (average and maximum)
I The time that is spent processing
I Wait times

I For resources we are interested in
I Utilization
I The number of entities that they process
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Events

I Events drive the simulation
I Move the entities forward through the system

I Events are typically random numbers and they tend to be
generated at random times

I For example an event can be used to generate a new entity, or
the time the entity needs to wait to be serviced

I Events are also used to move the simulation clock forward
I The simulation maintains a list of events, in time order
I It picks the first event from the list, moves the clock forward to

the event’s time, and then processes the event
I Processing the event will typically generate more events that

will occur in the future
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Overall Structure

1. Entity Generation
I A random process could be used to generate entities
I This process generates a random time for the next entity to be

created, and this event is placed on the event list
2. Entity processing

I When the entity is generated it is moved to the first process in
the simulation,

I If the resource is busy it enters the resources queue and waits
for it to be idle

I Once the entity seizes the resource, another event is generated,
the time when the entity is finished with the resource, this event
is then placed on the event list
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Overall Structure

3. Entity Destruction
I This process continues while the entities move through the

system and eventually reach the final step where they are
destroyed

4. Statistics
I At this point all of the summary statistics for the entity are

accumulated
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Python simpy
I A process-based discrete-event simulation framework based on

standard Python.
I https://simpy.readthedocs.io/en/latest/

https://simpy.readthedocs.io/en/latest/
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Example: Carwash Simulation

class Carwash(object):

def __init__(self, env, num_wash_stations, washtimes):
self.env = env
self.wash_stations = simpy.Resource(env, num_wash_stations)
self.washtimes = washtimes

def wash(self, car):
a, b = washtimes
washtime = random.randint(a, b)
yield self.env.timeout(washtime)
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Example: Carwash Simulation

def car(env, name, cw):
print(f�{name} arrives at the carwash shop at {env.now}�)

with cw.wash_stations.request() as request:
yield request
print(f�{name} enters the carwash at {env.now}�)
yield env.process(cw.wash(name))
print(f�{name} leaves the carwash at {env.now}�)
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Example: Carwash Simulation

def setup(env,
num_wash_stations,
wash_times,
time_between_arrivals):

carwash_shop = Carwash(env, num_wash_stations, time_between_arrivals)
i = 0
while True:

a, b = time_between_arrivals
arrival_time = random.randint(a, b)
yield env.timeout( arrival_time )
i += 1
env.process( car(env, �car %d� % i, carwash_shop) )
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Example: Carwash Simulation

print(�Carwash Simulation�)

seed = 42
random.seed(seed)

num_wash_stations = 2
washtimes = (3,7)
time_between_arrivals = (1,2)
simulation_duration = 40

env = simpy.Environment()
env.process( setup(env, num_wash_stations, washtimes, time_between_arrivals) )
env.run(until=simulation_duration)
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Data for DES

I A DES needs a lot of input data to function.
I This input data is in the form of random numbers drawn from

a probability distribution

Questions

I Where does this data come from?
I How do we know that it is right?
I What impact does inaccurate data have on our simulation?
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Data Gathering for DES

I Observe an existing system
I Collect the right data
I Ensure that data is not all mixed up

Example

I Mortgage application processing times at bank XYZ
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Data Gathering for DES:

I Three scenarios:
I We can collect data ourselves
I We can observe the collection of data
I We have no control over how data was collected

I We may get a sequence of observations xi

I Ideally the observer collected each observation individually with
as much accuracy as possible

I Sometimes we get pooled data
I A histogram of the observations and not the individual

observations themselves
I More di�cult to work with
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Why Pooled Data?

I Not enough accuracy was used in data collection
I We still got individual observations but the rounding makes

these the same as a histogram
I Privacy where individual observations might identify the people

or company involved

We may have no choice but to use pooled data
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Pooled Data for DES
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Using Gathered Data for DES

I Empirical data: randomly choose from data
I Empirical distribution: construct a distribution from data and

use it to generate random numbers
I Theoretical distribution: fit a theoretical distribution to the

data and generate random numbers from that distribution
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Empirical Data

I Each item in our data set is an observation of the real process,
we can just use this data as it is as the random input to our
system

I We can either play the data back in the order it was collected
or randomly selected samples from the data

I Both of these techniques are very easy to implement

Pooled Data

I We could randomly select one of the bins in the histogram
based on the number of items in the bin

I Then randomly generate a value from the bin’s range
Car washi
3 4 3 3 5 4 7 3 20 3 4 3 3 4 5

1 6 2

3 3 3 3 3 3,3 4,4 5 so
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Example

v

8,33 2,7 9

1.7 4.2 4.7 3.3



30 / 46

Pros and Cons of Using Empirical Data

Pros

I One of the advantage of empirical data is that its real and we
can use it to compare the results of our simulation to the real
system

I We don’t make any assumptions about the distribution or how
the observations were generated

Cons

I We have a limited sample size
I This can have an impact on the validity of our statistics
I It severely limits the lengths of our simulations, a small integer

multiple of the collection time
I We can’t generate a value outside of the range of collected

values, so extreme values won’t occur
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Empirical Distribution

I Need a distribution to generate samples from
I Construct a distribution from the observations themselves

I The resulting distribution is referred to as the empirical
distribution

I Generate samples from this empirical distributions
I Construct a cumulative probability distribution (CDF), so we

may sample from this distribution
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Constructing a CDF from Empirical Distribution

I Say X(1), X(2), · · · , X(n) are (sorted) observations. X(1) being
the smallest and X(n) being the largest.

I Goal is to construct the following piece-wise linear function
O

CDF

SORTED
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CDF from Empirical Distribution
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CDF from Empirical Distribution

I Given X(1), X(2), · · · , X(n) (sorted) observations, the CDF is
given by

F (x) =

Y
__]

__[

0 if x < X(1)
i≠1
n≠1 + x≠X(i)

(n≠1)(X(i+1)≠X(i)) if X(i) Æ x < X(i+1)
1 if x > X(n)
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CDF from Empirical Distribution (Pooled Data)

I Given a histogram of k cells, where each cell has ni data points
(observations), where each cell covers the interval [ai, ai+1].

I Define G(x) at cell boundaries in the following way:
I G(a0) = 0
I G(ai) = (n1 + n2 + · · · + ni)/n, where n is total number obser

I Now construct the following piece-wise linear function

a
mm
car

90,0
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CDF from Empirical Distribution (Pooled Data)

I Given a histogram of k cells, where each cell has ni data points
(observations), where each cell covers the interval [ai, ai+1].

I Define G(x) at cell boundaries in the following way:
I G(a0) = 0
I G(ai) = (n1 + n2 + · · · + ni)/n, where n is total number

observations
I Use the following formula to get G(x)

G(x) =

Y
_]

_[

0 if x < a0
G(aj≠1) + x≠aj≠1

aj≠aj≠1
(G(aj) ≠ G(aj≠1)) if aj≠1 Æ x < aj

1 if a > ak

EE
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Pros and Cons of Using Empirical Distributions

Pros

I We can now generate a much larger number of random
numbers

I We can also generate numbers that are not in the original
sample

Cons

I We cannot generate more extreme values
I All the numbers we generate are still within the range of the

smallest to largest numbers in our sample
I A large number of samples requires a large amount of memory

to store and longer processing time
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Theoretical Distribution

I A theoretical distribution is a mathematical distribution that
fits the observations
I Compact representation
I Ability to generate a wider range of random numbers

Types of Theoretical Distributions

I Discrete
I Continuous
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Commonly Used Theoretical Distributions 1

I Uniform distributions
I Triangular distribution
I Exponential distribution

I Inter-arrival times (of customers, parts, etc.)
I Time-to-failure for a piece of equipment
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Commonly Used Theoretical Distributions 2

I Gamma distribution
I Time-to-complete a task (serving a customer, processing a part,

etc.)
I Weibull distribution

I Time-to-complete a task
I Time-to-failure a part

I Normal (Gaussian) distribution
I Error
I Data that is a sum of a large number of random values, e.g.,

house prices, etc.
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Commonly Used Theoretical Distributions 3

I Poisson distribution
I Used for modelling the number events that occur in an interval

of time when the events are occurring at a constant rate, e.g.,
nuclear decay, etc.

I Lognormal distribution
I Similar to Gamma or Weibull distribution

I Beta distribution
I Modeling random proportions, e.g., the number of defective

parts in a shipment
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Commonly Used Theoretical Distributions 4

I Bernoulli distribution
I Simplest discrete distribution
I Modeling coin tosses

I Binomial distribution
I For number of successes in t independent Bernoulli trials

I Discrete uniform distribution
I Geometric distribution

I Number of failures before the first success in a sequence of
independent Bernoulli trials, e.g., the number of items inspected
before finding the first defective item
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Fitting a Theoretical Distribution to Data

I Estimate parameter values, e.g., mean and variance in the case
of Normal (Gaussian) distribution

I Use Chi squared test to compare data sampled from the
theoretical distribution to the observed data

I Many o�-the-shelf packages to perform this task
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Sensitivity Analysis

I Sensitivity analysis determines how the results of the simulation
change in response to changes in its input
I E.g., what is the e�ect of increasing the mean of the

exponential distribution used for arrival times by 5%?
I Sensitivity analysis gives us a measure of the reliability of our

results, do they change drastically in response to a small input
change?

I Reasons for performing senstivity analysis
I Impact of errors in input data, what is the impact of a bad

guess or unreliable data?
I Generality of the simulation, if there is a slight change in the

system will the results be about the same?
I Stability of the system/simulation, do small changes in the

input have major impacts on the simulation?
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Sensitivity Analysis

Changing an input by x%

I Case 1: simulation results change by less than x%
I Input has little impact on the results
I System has extra capacity, redesign?
I Time spent on improving accuracy probably wasted

I Case 2: simulation results change by approximately x%
I Need to be careful about accuracy of the data, since it has

some impact on the results
I Case 3: simulation results change by much more than x%

I This case should be investigate further
I Need to be very careful about the accuracy of the data
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Summary

I Anatomy of DES
I Data collection considerations
I Generating random numbers using the collected data

I Raw data
I Empirical distribution
I Theoretical distribution

I Sensitivity analysis


