Continuous Systems
Simulation and Modeling (CSCI 3010U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

1 OntarioTech

UNIVERSITY



Continuous systems simulation

» Time is treated as a continuous variable that drives the
simulation

» Model is based upon ditferential equations, which describe how
systems evolves over time, ‘and how Tt responds to changes in
input variables

» In this course, we will mostly deal with Qrdinary Differential

Equations (ODE), though Partial Differential Equations are
used in some cases
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Continuous system simulation: Variables

» Three set of variables:

» State variables;
» |nput variables; and
» Qutput variables.

» There is no overlap between input and state variables
» Input variable are not controlled by the simulation
» The angle of the steering wheel in the car simulator example

» Qutput variable are things that we observe
» The speed of the vehicle in the car simulator example

» State Variables are controlled by the differential equations

» The speed of the vehicle in the car simulator example
» The location of the vehicle in the car simulator example
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Ordinary Differential Equations (ODEs)

An ODE consists of the following ingredients:

» An independent variable (usually “time” t that derivatives are
taken with respect to

» A dependent variable, i.e. function of the independent variable,
e.g. x = x(t) “the variable  which is a function of ¢".

» A multi-variable function F' that describes a relationship
between the derivatives of the dependent variable (taken with
respect to the independent variable)

Putting it all together, we %et
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ODE: comments

> Ccllf denotes derivative of x w.r.t. ¢
» 4°Z danotes n-th derivative of = w.r.t. ¢

dtm )
X
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> Dy =9
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ODE: comments

= ‘Cll—f denotes derivative of x w.r.t. ¢
> ‘Cli:—f denotes n-th derivative of  w.r.t. ¢
/! dx
. X
>

Order of a differential equation is the highest order of
derivative in that equation
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ODE: comments

Ccll—f denotes derivative of  w.r.t. ¢

‘Zi:—f denotes n-th derivative of x w.r.t. ¢
/! _ dx

=&

__dx
Dx—dt

Order of a differential equation is the highest order of
derivative in that equation

vvyyvyyvyy

Examples

» mx” = F (order is 2)
> '+ 322" + 2" =0
> o/ + 342 = 32



ODE: comments

= ‘Cll—f denotes derivative of x w.r.t. ¢
> ‘Zi:—f denotes n-th derivative of  w.r.t. ¢
/! dx
. X
>

Order of a differential equation is the highest order of
derivative in that equation

Examples

» mx” = F (order is 2)
> o' + 322" + 2" =0 (order is 3)
> o/ + 34z = 32



ODE: comments

= ‘Cll—f denotes derivative of x w.r.t. ¢
> ‘Zi:—f denotes n-th derivative of  w.r.t. ¢
/! dx
. X
>

Order of a differential equation is the highest order of
derivative in that equation

Examples

» mx” = F (order is 2)
> o' + 322" + 2" =0 (order is 3)
» 2/ 4+ 34z = 32 (orderis 1)



Solving differential equations

» Solution is the dependent variable x = x(t) that satisfies the
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» Key idea: integration
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» Key idea: integration
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Solving differential equations

» Solution is the dependent variable x = x(t) that satisfies the

equation
» Key idea: integration

Example: 2"/ = 2
1. Integrate once:
2. Integrate again:

=2t + Cy
= t? +tC} + C5 (Solution)

LU/
X

How to solve for C'1 and (', also called, constants of integration?

» Use initial or boundary conditions.
» Using initial conditions 2'(0) = 3 and z(0) = 2, we get C1=3
and Cy = 2. The solution is x(t) = t* 4 3t 4 2.

(,M?lde Soluktom




Aside: Constant of Integration

Notice that ;
f () _ 3,2

dx g
for both when f(x) = 2% or f(x)x? + C.

This suggests constant C' disappears in the process of differentiation.

Therefore, when we integrate we add the constant C' for the sake of

completeness.
23
/3$2d£€:3 3 +C=z+C

Furthermore, we will need other information to find the true value
of C. Note also that there is nothing preventing C' = 0.
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Nth order ODEs

» General solution to an nth order ODE will contain n constants
of integration
» \We need n more equations
» Use initial or boundary conditions to get these equations to
solve for the constants of integration
» Initial conditions

» The values of x(t) and its first n — 1 derivatives for a particular
value of ¢

» |f such values are only available at the end, run time backwards
to convert problem to initial conditions

» Boundary conditions
» The values of x(¢) and its derivatives for two different values of

t
T a(1)=2
Ea. 'x:':z 7((?)24



Nth order ODE reducibility 1 W% order

Any explicit differential equation of order n > " |$':- ;
"
(n) _— / (n—1)
_—_Ax X = F t?':ljax;’”,a?
. _7 ( )

can be written as a system of n first-order differential equations by
defining a new family of unknown functions

s

Notice the abuse of notation. Here z(¥) denote the k-th derivative
of x w.r.t. t.



Nth order ODE reducibility

We can then represent the following n-th order ODE
x(n) — F <t7 ZC, x/7 “ e 7:[/'(77’_1))

with n first-order ODEs as follows

ZE’1:£IEQ

T
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Nth order ODE reducibility

Example A e
P <o ammb o

The following 2nd order ODE /

d?z -

a2

N qs m/;'

can be reduced to p

d—f =V &= mtoduced a

dv NN M‘b‘&.

& =Y



Nth order ODE reducibility

Example
The following 2nd order ODE

d?x

az =Y

—

can be reduced to
dx
— =
dt
dv _
T
We introduced a new variable v.<
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First order ODEs

» All of our simulations only involve first order ODEs
» What about models that involve higher order ODEs?

» E.g., the equation of motion for particle is modelled by a second

order differential equation
» Applies reducibility, i.e., replace a higher order differential
equation by a system of first order differential equations
» We can replace an nth order ODE with n first order ODE

» Advantages of first order ODEs

» First order equations are much easier to solve numerically
» Very few numerical solvers available for higher order equations



Equation of motion

Newton's second law of motion:
“The acceleration of an object as produced by a net force

is directly proportional to the magnitude of the net force,
in the same direction as the net force, and inversely pro-
portional to the mass of the object.”

Mathematically: /

1 .
a x F and a o -, and combining the two we get Recall

a = %, so ' = ma is a second order equation.
F W'W
= ma
2 ODE
d°x /
— F=m—=



Equation of motion

We introduce a new variable velocity v = ‘é—f, and get the following

first order system of equations

F: WA xd"’— dQSA J;NMUCL a‘mhble-
Sy LoEl e
s Mo d;t—> \F =
J, \,‘____mdtz
v 7

% ﬁ‘:ﬂ'—mdm ODE .




Solving ODEs numerically

General idea: given a solution x(t) at time ¢t = tg, incrementally
step forward in time to find x(t + At)

Example: lets consider the equation of motion

® ®
d‘ Fem® o Ap= (E> (At)
Fsm_‘% S dt @ m
d ‘@J:CZ — Az = (v)(At)
We can Mse Av and Ax @he current values of v and 7,
respectively. -
x(0) 2 (o)
Raduribitily V() ()
prped ) |



Solving ODEs numerically: an example

What is the value of 2 at time t = 37
Model

v(t)
z(t)

v(t + At)
z(t + At)

Setup

» m =1, F =1 (other quantities used in the simulation)
» v(0) =0, z(0) = 0 (initial state), At =1 (time step)

Solution
> v(1) =4 o |2¥
> x(1)=41
> y(2)= % , ' .
> x(2) = 0Pt —_—
> ”U(S)Z( )3 /'/0 i l‘V} ¥ Seconds
> z(3)=§ \ld
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Solving ODEs numerically: an example

What is the value of 2 at time t = 37
Model

v(t + At)
z(t + At)

v(t)+ = v(t) +
r(t) + Ar =x(t) +

Setup

» m =1, F =1 (other quantities used in the simulation)
» v(0) =0, £(0) = 0 (initial state), At =1 (time step)

Solution
> v(l) =1
> (1) =1
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Solving ODEs numerically: an example

What is the value of 2 at time t = 37
Model

v(t + At)
z(t + At)

v(t)
z(t)

Setup

» m =1, F =1 (other quantities used in the simulation)
» v(0) =0, £(0) = 0 (initial state), At =1 (time step)

Solution
> v(l) =1
> (1) =1
> v(2) =2
> 2(2) =3
> v(3) =3



Solving ODEs numerically: an example

What is the value of 2 at time t = 37
Model

v(t + At)
z(t + At)

v(t)
z(t)

Setup

» m =1, F =1 (other quantities used in the simulation)
» v(0) =0, £(0) = 0 (initial state), At =1 (time step)

Solution Siate VLS ot + s
> z(1) =1 J\«pnl'vm&: M, £
> v(2) =2 :
e



Solving ODEs numerically: practical considerations

» Have to choose At carefully

» At too small; the simulation can become very slow

» At too large; the simulation can become very inaccurate

» Advanced techniques can change At when solving equations to
maintain acceptable accuracy and speed
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Solving ODEs numerically: practical considerations

» Have to choose At carefully

» At too small; the simulation can become very slow

» At too large; the simulation can become very inaccurate

» Advanced techniques can change At when solving equations to
maintain acceptable accuracy and speed

» At determines the exact points in time for which we have the
solution

» What if we want solution at other points in time?
» This places constraints on how we solve the equations

» Often times At used for solving ODEs is much smaller than the
one used to update the display
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» Galaxy formation
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» Galaxy formation



Choice of AT

» Molecular activity (fraction of a millisecond)
» Evolution of an ecosystem (months or years)
» Galaxy formation (millions or billions of years)
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Simulation loop
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» Display current results
» Get the user response



Simulation loop

» Advance the simulation
» Display current results
» Get the user response
» Repeat
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Displaying results

» Real-time or not?

» Timescale

» Response and interactivity
» Refresh rates



Mass spring system

Hook's law (1676) states, “the
extension is proportional to the

force.”
Afgrunshor

{

Mathematically, ' = —kx, where k

force I'.




Mass spring system

Step 1: construct a model that will describe the motion of
the mass over time

Hook's law: F' = —kx fores W
Newton's Second Law of Motion: F' = ma — m undn
Combining the two we get *O'L@- .
® V= .A!-
& ma = —kx_

@m.“i’.:-kx :{‘m,dxzz_/m 2d - eden
at dt> 1 ope

IS

® by = 5= bt
O bx = vAt




Mass spring system

Step2: find a way to solve the model numerically



Mass spring system

Step2: find a way to solve the model numerically

2 .
Convert the second order m% = —kx to a system of first order
equations

dx

— =

dt

dv

=k
m— X



Mass spring system

Step2: find a way to solve the model numerically

Convert the second order m% = —kx to a system of first order
equations Jg‘,ﬁwhm\
dx
=T a m
dt Lavww—e
dv
dt - P p x

And make the update rules

x(t+ At) = x(t) + v(t) At

v(t 4+ At) = v(t) — %w(t)At



Mass spring system

» Set values for mass m and spring constant k
» Set the initial conditions

» Values for x and v at start time ¢

» Run the simulation loop

1. Update t to t + At

2. Update values for z and v using the update ruls
3. Display results or save them to file for plotting
4. Repeat steps 1 to 4

We just simulated a Simple Harmonic Oscillator

Code: 1d-mass-spring



Mass spring system

# Mass—-Spring system
class Mass:
def dinit (self):

self.x = 5
self.vx = 0
self .k =1 - SYQQD i
self.dt = 0.1 M“A’a
self.t = 0
self.m = 1.0

def update(self):
self.x += (self.vx * self.dt)
self.vx += (- self.k *x self.x * self.dt / self.m)
self.t += self.dt



Mass Spring Damper

The mass experiences a damping force that is proportional to its

current velocity
1x

Mathematically
F=—kxr—cv

where c is the damping constant

Code: modify 1d-mass-spring to add damping effect



Bouncing ball

Assumption 1: We simplify
the problem by treating the
ball as a particle

From Newton's Second Law of
Motion

dx?
F=m——=
g
where x is the height of the

ball from the ground and m is
the mass of the ball.

+x

®Onm




Bouncing ball

Assumption 2 Gravity is the
only force acting upon this
ball then

F=—mg
Putting it together we get

e

dz? B

a2 ~ 7




Bouncing ball

Data collection

» We need to know the
value of g. For our
purposes, we use
g =9.8m/s?

» By using different g we
can simulate bouncing
ball on different planets




Bouncing ball

Height vs. Time
10

time = 30.0s
frame = 2999

6 / Pnb'ew.

ANAAAN]
A V HV

0 5 10 15 20 25 30
Time

Height

Did you notice something peculiar with this plot?

Code: ball-floor turn off RK4



Bouncing ball

» The ball goes higher with each bounce, which is unexpected.

» The error doesn’t go away even if we make timestep really
small. It does, however, minimizes the effect.

» |t seems we are imparting energy to the ball with each bounce.
This breaks the the law of conservation of energy, which states
that “the total energy of an isolated system remains constant.”




Bouncing ball total energy

Total energy of the ball is the sum of its kinetic and potential
energies
Kinetic gy = =mu? / "“(7
Potential rgy = maqy
o Conservation of energy

° Kinet eeeeeeee

T

This behavior is due rrec of Euler method.




Bouncing Ball

Total energy is conserved when using Runga-Kutta or RK4 solver.

Height vs. Time

Conservation of energy

] 'n 0T

Code: ball-floor turn on

RK4

e Kinetic energy
e Potential energy




Euler method

» A numerical solver for first order ODEs

» First order numerical procedure for solving ODEs (initial value
problems)

» It is an explicit method _

» Calculates the state of the system at a later time given its

current state by using the update equations
> y(t+ At) = F(y(t)

——




Euler method

» A numerical solver for first order ODEs

» First order numerical procedure for solving ODEs (initial value
problems)

» |t is an explicit method

» Calculates the state of the system at a later time given its
current state by using the update equations

> y(t+ At) = F(y(t))

Aside: implicit methods

» Calculates the state of the system at a later time given by

solving an equation that includes both the future state and the
current state

> G(y(t+ Ab), y(1) = 0
e, but dqﬁ‘wb




Euler method

> Numericallx unstable

> Adversally effects accuracy. &
» Exhibits error growth over time

» Error is proportional to At

S




Euler method

» Numerically unstable

» Adversally effects accuracy
» Exhibits error growth over time

» Error is proportional to At
» Particularly unsuited fo{ stiff @quations

» Equations containing terms that lead to rapid changes
> E.g., a mass spring system with large spring constant

vots-d ™

e 3k
k”k_s




Euler method

» Numerically unstable

» Adversally effects accuracy
» Exhibits error growth over time

» Error is proportional to At

» Particularly unsuited for stiff equations

» Equations containing terms that lead to rapid changes
» E.g., a mass spring system with large spring constant

» Use extremely small time steps
e

» Infeasible in practice




Runga-Kutta method

» An other numerical solver for first order ODEs
» An alternate to Euler method

» A family of explicit and implicit methods

» Often RK4 is used

» Error is proportional to At
» Makes a huge difference for small values of At

Takeaway: whenever possible use RK4 method



Numerical solvers in Python

from scipy.integrate import ode
def f(self, t, y, argl):
"""Solves y' = f(t, y) —D '“’O’UQW ODE
Arguments:
- y is the state of the system. In our case
y[0] is the position and y[1] is the velocity.
- argl is 9.8, as set by set_f_params() method.

Returns vector dy/dt. In our case, dx/dt = v and
dv/dt = -g.

return [y[1], -argl]

N

= ode(f) .set_integrator('dop853')
.set_initial_value([y0, vyO0]l, t0)
.set_f_params(9.8)

.integrate(dt)

print r.t, r.y

r
r
r
r



Bouncing ball: takeaways

> Exploit your knowledge of physics to determine if simulation is
behaving as expected

» Use several strategies

» Compare outputs of several strategies

» |f outputs differ, you must have a way to explain the differences
» If outputs are the same, the simulation may be correct




Discussion

Q. Why does Euler method performing so poorly for our bouncing
ball example?



Discussion

Q. Why does Euler method performing so poorly for our bouncing
ball example?

A. Euler method assumes that the acceleration remains constant
between two time steps. Notice that this assumption is generally
false, but especially so when the ball “hits” the ground at x = 0.
The velocity is flipped, changing the sign of the derivative and
causing a discontinuity.

RK4 method is much better at handling discontinuities (as long as
there aren’'t too many of these).

This is why RK4 is able to get good results even for large time steps.



Bouncing ball

Height vs. Time

10
time = 29.9s
frame =299
8 -
6 ]

ﬂ

|

0 5 10 15 20 25 30
Time

For this simulation, the floor sits at height 0. The ball pierces
through the floor, which is incorrect.

Code: ball-floor increase timestep to see the ball penetrating the floor



Bouncing ball

Need a better way to detect collisions with the floor



Bouncing ball

Need a better way to detect collisions with the floor
Scheme 1

» Use smaller time steps
» The ball will travel less distance between two time steps, and

there is a greater chance of catching the collision instant
» In any case, the ball will penetrate less into the floor



Bouncing ball

Need a better way to detect collisions with the floor
Scheme 1

» Use smaller time steps
» The ball will travel less distance between two time steps, and

there is a greater chance of catching the collision instant
» In any case, the ball will penetrate less into the floor

Scheme 2

» Try to find the exact time of collision using x = vt relationship
» Adjust time step accordingly







