Rigid Bodies
Simulation and Modeling (CSCI 3010U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

1 OntarioTech

UNIVERSITY

Rigid Bodies

y e
J 3 =
R \ ;s
»T h N
7 1 \ .
) k 1 N
,/ / \ 3
y \
a4 e \ Y
Sty ? |
7/ 0% . P TN v
/ .
e g ; Sl
] .
e) . .
L & 7 1 P
T2 ’ k. & y
g ~ e -
\3 P — 1 ‘/‘
\. 1,-"
\ ’.T
. PRt .
S g !
Y. pp—
‘o .-
-4 poe
= b
. ~ LN 7z
/ » p— - .
N \
{ 5
x 1
1 .
= 1
\ 5
iy 1
\ s
p I
/

Particle

N F N
- \
y P
’ \
! \
i \
i \
l. 1
. g :
! = N !
1 U . !
I d B I
! : 0 /.’
1 \ A 2
/ \
! \
\
- b
\ >
\
1
<. d
S &

Rigid Body

Particle vs. Rigid Body Dynamics

» State of a particle
» Position p
» Velocity v
» State of a rigid body

» Position p

» Velocity v

» Orientation 6

» Angular velocity w

Coordinate frames

€2

» x| is (1,2) in coordinate frame described by e; and e;
» What is [x],, i.e., [x], expressed in u; and uy?

Coordinate frames

> x =e; + 2e9

> x = [uO]e - Oé[ul]e —+ ﬁ[u2]e

» Note that [x], = («, 8), so we are interested in finding values
of o and §.

Coordinate frames

Coordinate Frames Exercise - Part 1
What is [x],”

Coordinate Frames Exercise - Part 2
What is [x],”

€9

Rigid Bodies in 2D

Vv

Angular Velocity

__ do
o= a
» Units are radians per second

» Radian is the angle subtended by an arc whose length is equal

to its radious: 6 = %

Linear Velocity at a Point on the Body

> v =rw

Rigid Bodies in 3D

» Unlike 2D, orientation in 3D cannot be described using any
angle.

» There are many schemes for describing rotations in 3D.

» We will use a 3 x 3 rotation matrix R to describe the rotation
of rigit body.

» R is an orthognal matrix

> lts columns are orthonormal, i.e., r} r; = 0 if i # j, 1 otherwise,

where r; and r; denotes i and j*" columns, respectively

» R’R=1and RR” =1

F"&"\ &.’1 &'31’ QL“, h"l ’L}) . (4-“) &4" ,Lu) s 9
3 e 3
’L" &" 4’> ¢ L § 1 A o . ’é Yy = g

b‘t)l‘l abi‘b a”_ ¢.& -0

Rotations in 3D

Matrices for rotations about the x, y, and z axes

1 0 0
R.(6) = 0 cosf —sinb

0 sinf coséf

cos 0 sinf]
R,(0) = 0 1 0

| — sin & 0 cos 9_

cosf —sinf 0]
R.(0) = |[sinf cosf O
0 0 1

Rotations in 3D

It is possible to describe a rotation as a sequence of three rotations
around XY Z coordinate frame axes attached to the moving body

Y Y
Yv7\01 %
Z X ; X ZW\AX
B = .
(@) R (7)

X
A
z}’x R?J (6> Rac z

Then rotation matrix R = R,(y)R.(0)R,(8)

Here, XY Z coordinate system that is attached to the body moves,
while the xyz system is fixed. The rotations are with respect to the
XY Z coordinate system. It is also possible to define these

(elemental) rotations about the axes of a fixed coordinate system
TYZ.

Rotations in 3D

Another way to represent a rotation in 3D is to use the axis-angle
convention.

{ N

The matrix of a proper rotation R by angle 6 around the axis
u = (Uy, Uy, Usz)

COSG—FU?B (1 — cos0) UgUy (1 —cosO) —ursinfd wuzu, (1 —cosB) + uy sin 6
R = [uyugz (1 —cos8) + u, sin 6 cos@—l—ui (1 — cos0) UyUy (1 — cosB) — uy sin 6

UzUg (1 —cosB) —uysinfd uzuy (1 —cosB) + uy sin 6 cos@+u§ (1 — cos0)

Rotations in 3D

» We will use a 3x3 rotation matrix R
» \We need to find the relationship between angular velocity and
rotation matrix.

We will return to this later.

Equations of Motions for Rigid Bodies
Force acting on a Rigid Body

» Net force acting on an object is the rate of change of its linear
momentum.
d—P = F > Fs'MQ
‘gt _
» Linear momentum: P = mv, where m is the mass of the

object and v is its linear velocity

Equations of Motions for Rigid Bodies
Torque acting on a rigid body

» Net torque acting on an object (about point o) is the rate of
change of its angular momentum .

dL _
dt = ‘eque

» Angular momentum: L = lw, where I is the inertia tensor
and w is its angular velocity (about point o)

Torque

» Torque (in this example, clockwise or counter-clockwise):

T—dxF Veckrt MPMQ‘

» When force passes through the center of mass, the associated
d vector is zero; therefore, this force produces no torque or

rotational effect
es
2= (0, 44,42 wk of poger /
b - (b‘lo ‘03’ b‘&)
..E - - I :j k Center of mass A

Center of Mass (COM)

» The center of mass is the mean location of all the mass of the
body.
» The center of mass r is defined as

1

Ty = i /p(x,y,z)a?dV
1

Ty — M /p(ﬂ?,y,Z)de

1
Ty = M/p(ll?,y,Z)ZdV

where p(x,y, z) is the density at point (z,y,2). M is the total

mass of the object. Also, density = -

World frame

COM as the origin of the body coordinate frame

» Selecting COM as the origin of the body coordinate frame
greatly simpifies the equation of motions

» Any force applied to (or passing through) the COM doesn't
induce rotation.

Force 2 » Force 1 (translation only)

» Force 2 (translation only)
» Force 3 (both translation &
rotation)

Force 1

rce 3

19 / 45

COM - Discretization

Consider a rigid body composed of N point masses m; located at
positions (x;,y;, 2;), respectively, in the world coordinate system.

Here i € [1, N|.
Then the center of mass of this rigid body in the world coordinate

system is wosld ¢ Limakiee

COM - Exercise

Compute the center of mass of a rectangular brick with point
masses at its 8 vertices. Assume that vertex 1 is sitting at (1,1,1).
The values of point masses are m;, where i € [1,8|.

y

Let's assume that [=4, h =1, d =2 and m; = 1 to get things
started.

COM - Exercise - Python Code

import numpy as np

8 H H H H H HFH

=g

r(:
r(:
r(:
r(:
rl:
r(:
r(:
rl:

array([1,0,0])

.array([1,h,0])

array([0,h,0])
array([0,0,-d])
array([1,0,0])

.array([1,h,0])

H —-———- G

/1 /1

/ E--——/F
/] e //

—————— c/
/ |/

—————— B

np.ones(8)
np.empty((3,8))

4

1

2

,0] = np.array([1,1,1])
,11 = r[:,0] + np.

,2] = r[:,0] + np

,3] = r[:,0] + np.

,41 = r[:,0] + np.

,5] = r[:,4] + np.

,6] = r[:,4] + np

,7] = r[:,4] + np.

print('m:\n', m)
print('r:\n', r)

array([0,h,0])

H H H H HHHH
T QQTMEogOaQwe

np.sum(m) # Total mass

M =
print('M:\n', M)

m_tmp = np.tile(m, (3,1))
print(r * np.tile(m, (3,1)))

center_of_mass =

np.sum(r * np.tile(m, (3,1)), axis=1) / M

print ('center of mass:\n', center_of_mass)

COM - Example - Program Output

m:

[1. 1. 1. 1. 1. 1. 1. 1.]

Ir.

[[1. 5. 5. 1. 1. 5. 5. 1.]
[1. 1. 2. 2. 1. 1. 2. 2.]
[1. 1. 1. 1. -1. -1. -1. -1.]1]
M:

8.0

[[l1. 5. 5. 1. 1. 5. 5. 1.]
[1. 1. 2. 2. 1. 1. 2. 2.]

[1. 1. 1. 1. -1. -1. -1. -1.]1]
center of mass:
[3. 1.5 0.]

Inertia Tensor

Inertia tensor provides a concise description of the mass distribution
around the center of mass. p(x,y, 2) denotes density at

center-of-mass centered point (z,y, z). Recall density = -2

volume”

Ly = | p(z,y,2)(y* + 2)dV

Lyy p(x,y,z)(z2 —|—:132)dV

~
|
S~
S~
S~
— S~

I:ch _I:cy _IZEZ [ZZ :0(337 Y, Z)(CE2 + yQ)dV

p(x,y, z)xydV

.
8
-
<
-
I\
2
<
I
<
S
|

3
'\

|
-
8

|

p(z,y, z)xzdV

p(z,y, 2)yzdV

S~
'\

I
-
<

|

Inertia Tensor - Discretization

Consider a rigid body composed of N point masses m; located at
center-of-mass centered positions (x;, y;, z;), respectively, in the
world coordinate system. Here ¢ € [1, N|.

lze = Zm’l<yz2 +27)

i Loy _I:Uy Iy,] L. = Zml(aj? + y?)
I=| -1, I, -—I,. z-

Ia:z — Izac — E mzxzzz
7

,I: O

Inertia Tensor - Exercise

Compute the center of mass of a rectangular brick with point
masses at its 8 vertices. Assume that vertex 1 is sitting at (1,1,1).
The values of point masses are m;, where i € [1,8|.

y

Let's assume that [=4, h =1, d =2 and m; = 1 to get things
started.

Inertia Tensor - Exercise - Python Code

continu

rp = r -
print('rp

I = np.em
1[0,0] =
I[1,1]
I1[2,2]
1[0,1]
1[0,2]
I[1,2]
print('I:

ed from the previous example ¢:‘,’V|
np.tile(center_of _mass , (8,1)).T “ff’
:\n', rp)

pty ((3,3))

np.sum(np.multiply(np.power(rp[i,:],2) + np.power(rpl[2,:]1,2), m))
np.sum(np.multiply(np.power(rp[2,:],2) + np.power(rpl[0,:]1,2), m))
np.sum(np.multiply(np.power(rp[0,:]1,2) + np.power(rpl[i,:]1,2), m))
I[1,0] np.sum(np.multiply(np.multiply(rp[0,:], rpl[1,:]1), m))
I[2,0] = np.sum(np.multiply(np.multiply(rpl[0,:], rp[2,:]1), m))
I[2,1] np.sumn(np.multiply(np.multiply(rp[1,:1, rpl[2,:1), m))
\n', I)

Intertia Tensor - Exercise - Program Output

Irp:
[[-2. 2. 2. =-2. =-2. 2. 2. =2.1]
[-0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5]
[1. 1. 1. 1. -1. -1. -1. -1. 1]

I:

Inertia Tensor in the Body Coordinate Frame

>

vvyyvyy

The inertia tensor I that we just computed is expressed in the
world coordinate frame. Consequently it changes as the
orientation of the rigid body changes.

We can express the inertia tensor in the body coordinate frame.
We refer to inertia tensor in the body coordinate frame as Ipqy.
Ioqy doesn’t change as the orientation of the body changes.
Ipoay is diagonal, i.e., A W value I“
‘ 0 o 1 ™t vk areund
Ibody — Iso O 2~ anit bw be
00 Iss | gey compaed o
Inverse of Ip,qy: *liov anes 5“‘ 4
1o g 3 stn
11
-1 1
Ibody T O 122 ?
R o

Computing Iq,

Option 1

Diagonalize I d

» Compute eigenvectors and eigenvalues of 1

» Eigenvalues form the diagonal matrix I,g,

» Eigenvectors form the 3-by-3 rotation matrix R that describes
the orientation of the rigid body

» This is the preferred approach

Option 2

Use 3-by-3 rotation matrix R that describes the orientation

of the rigid body con- Voha
> L, = RTIR T = wuzs

—>

1Y = M

Inertia Tensor - Rotated Body Example - Python Code

Continued from previous example
from scipy.spatial.transform import Rotation as R

rot_mat = R.from_euler('y',45, degrees=True).as_matrix() &= %

print('rot_mat:\n', rot_mat)
Note: 1) rp; 2) center of mass; and 3) overwriting r l i::

r = np.dot(rot_mat, rp) + np.tile(center_of_mass, (8,1)).T A \ ‘)
print('rotated_r:\n', r) ey L W\
&

o/

center_of_mass = np.sum(r * np.tile(m, (3,1)), axis=1) / 1\3 “E\D
o™y

print ('center of mass:\n', center_of_mass)

rp = r - np.tile(center_of_mass , (8,1)).T
print('rp:\n', rp)

I = np.empty((3,3)) -W P\
I1[0,0] = np.sum(np.multiply(np.power(rpl[i,:]1,2) + np.power(rpl[2,:]1,2), m)) ‘;“é%"‘
I[1,1] = np.sum(np.multiply(np.power(rp[2,:],2) + np.power(rpl[0,:]1,2), m))

I1[2,2] = np.sum(np.multiply(np.power(rpl[0,:]1,2) + np.power(rpl[i,:]1,2), m))
I[0,1] = I[1,0] = np.sum(np.multiply(np.multiply(rpl[0,:], rp[l,:]1), m))
I1[0,2] = I[2,0] = np.sum(np.multiply(np.multiply(rpl[0,:], rp[2,:]1), m)) ‘Lﬁi‘
I[1,2] = I[2,1] np.sumn(np.multiply(np.multiply(rp[1,:1, rp[2,:1), m))

print('I:\n', I) ¢J

Computing I_body using rotation matrix

T
I_body = np.dot(np.dot(rot_mat.T, I), rot_mat) R I R _’ I
baod

print('I_body:\n', I_body)

Computing I_body using eigenvalues and eigenvectors
W, v = np.linalg.eig(I) — —
print('eigenvalues:\n', w)

print('eigenvectors:\n', v)

Inertia Tensor - Rotated Body Example - Program Output

rot_mat:
[[0.70710678 O. o 70710678] K Lk;’
[0. 1. J
[-0.70710678 O. O 70710678]]
rotated_r:
[[2.29289322 5.12132034 5.12132034 2.29289322 0.87867966 3.70710678
3.70710678 0.87867966]
[1. 1. 2. 2. 1. 1.
2. 2.]
[2.12132034 -0.70710678 -0.70710678 2.12132034 0.70710678 -2.12132034
-2.12132034 0.70710678]]
center of mass:
[3. 1.5 0.]
rp:
[[-0.70710678 2.12132034 2.12132034 -0.70710678 -2.12132034 0.70710678

0.70710678 -2.12132034]
[-0.5 -0.5 0.5 0.5 -0.5 -0.5
0.5 0.5]

[2.12132034 -0.70710678 -0.70710678 2.12132034 0.70710678 -2.12132034
-2.12132034 0.70710678]1]
I:
[[22. 0. -12.]
[0. 40. 0.]
[-12. 0. 22.]]
I_body:
[[3.40000000e+01 0.00000000e+00 8.45096405e-15]
[0.00000000e+00 4.00000000e+01 0.00000000e+00]
[7.79029649e-15 0.00000000e+00 1.00000000e+01]]
eigenvalues:
[34. 10. 40.]
eigenvectors:
[[0.70710678 0.70710678 O.]
[o. 0. 1.]
[-0.70710678 0.70710678 O. 1]

Inertia Tensor

» Inertia tensors are available for many canonical objects:
rectangles, circles, spheres, etc.

» Efficient algorithms exist to compute inertia tensor, center of
mass, body coordinate frames a given polygonal model of an
object

» Many tools exist to construct polygonal models of 2D /3D rigid
objects

Body coordinate frame

Attach a coordinate frame to a rigid body

Pworla

pbody

R orientati

Centerof mass

Body frame

x translation

» Origin: center of mass(defined in the
world frame)

» Axes: defined in the world coordinate
frame by a 3-by-3 rotation matrix R.
Columns of R define the =, y and z axes
of the body coordinate frame

» Inertia tensor L4, is constant and
diagonal in this frame

» From body coordinate frame to world
coordinate frame

Pworld = prody + X

?b"J = KTQ'wwb\ = X)

World and Body Coordinate Frames

World coordinate frame

» Collision detection and response
» Display and visualization

Body coordinate frame

» Compute quantitites such as inertia tensor once and store them
for later use.

Rigid Body Dynamics

State variables

Constants

Derived quantities

Position X | 1 by 3 vector
Orientation R | 3 by 3 rotation matrix
Linear Momentum P | 1by 3 vector

Angular Momentum L | 1by 3 vector

Mass m scalar

Inertia tensor Ipoay | 3 by 3 matrix (in body frame)
Linear velocity 1% 1 by 3 vector

Angular velocity W 1 by 3 vector

Inertia tensor -1 3 by 3 matrix (in world frame)
Total force F 1 by 3 vector

Total torque T 1 by 3 vector

Rigid Body Dynamics

Linear effects
> dx/dt =v

> JP/dt =F [”3] ot ix

r> v=P/m

Angular effects /

» dR/dt = w*R, where

W=\ w, 0 —wy
Wy W 0 |

» dL/dt =N
o o =I"1L
— —1

Rigid Body Dynamics

W

L

state[0]
state[1]
state[2]

// R - orie
state[3] =
state[4] =
state[5] =
state[6] =
state[7] =
state[8] =
state[9] =
state[10]

state[11]

// P - line
state[12]
state[13]
state[14] =

// L - angu
state[15]
state[16]
state[17]

// t - OSP
state[18] =

1- // x - position

x[0];
x[1];
x[2];

ntation
R[@]1[e];
R[11[e];
R[2][6];
R[O]I[1];
RILI[1D;
R[21[11;
R[O]1[2];
R[1][2];
R[2][2];

ar momentum
PLe];
P[11;
P[2];

lar momentum
Lrel;
L[1];
L[2];

needs it
0.0

Init: Flatten state variables
into a statevector

r// dx/ dt
rate[0]
rate[1]
rate[2]

// dr/dt

rate[3]
rate[4]
rate[5]
rate[6]
rate[7]
rate[8]
rate[9]
rate[10]
rate[11]

// dp/dt
rate[12]
rate[13]
rate[14]

// dL/dt
rate[15]
rate[16]
rate[17]

// dt/dt

rate[18]
=

\%
v([el;
v[1i];
v[2];

w* R

double[][] Rdot =
mult(star (omega), R);

Rdot[@][0];
Rdot[1][0];
Rdot[2][@];
Rdot[0][1];
Rdot[1][11];
Rdot[2][1];
Rdot[@][2];

Rdot[1][2]

Rdot[2][2]

force

force[0];
force[1];
force[2];

torque

torque[0];
torque[1];
torque[2];

1
1;

v

Rate[] encodes 15t order
ODE for our system

odeSolver.step();

/] x

x[0] = state[0];

x[1] = state[1]; J
x[2] = state[2];

// R

R[@][0] = state[3];
R[1][0] = state[4];
R[2][@] = state[5];
R[@][1] = state[6];
R[1][1] = state[7]; V
R[2][1] = state[8];
R[@][2] = state[9];
R[1][2] = state[1@];

R[2][2] = state[11];
R = orthonomalize(R)

// P

P[@] = state[12];
P[1] = state[13];
P[2] = state[14];
// L

L[@] = state[15];
L[1] = state[16];
L[2] = state[17];

Iinv = mult(R, mult(IbodyInv, transpose(R)));
omega = mult(Iinv, L);

Let ODE solve the state and
then copy the state back to
our statevariables x, R, L
and T.

Rigid Body Dynamics: Numerical Considerations

» Over time numerical errors accumulate in rotation matrix R
» This effects our computation of I and w
» Orthonormalize R after every timestep

Orthonormalization

1. Normalize R4

2. Rg = R1 X R2 (normalize Rg)

3. R2 — R3 X R1 (normalize RQ)
Here R; represent the i-th row of matrix R
Errors were shifted in the matrix

Representing Rotations

» We chose to represent rotations as 3-by-3 rotation matrices
» Quaternions can be used to represent rotations as well

» Most rigid body dynamics systems use quaterions
» See Ch. 17 of the textbook

Representing Rigid Bodies

» A rigid body has a shape that does not change over time

» It can translate through space and rotate

» A rigid body occupies a volume of space

» The distribution of its mass over this volume determines its
motion or dynamics

Shape representation

» Shape representation is studied extensively in computer
graphics and some areas of mechanical engineering and
mathematics

» There are many ways of representing shape, each with a
different set of advantages and disadvantages

» We will stick to polygons

Shape

>

>

Representation using Polygons

The surface of the object is represented by a collection of
polygons

The polygons are connected across their edges to form a
continuous surface

In order to have a well behaved representation we need to
constrain our polygons

First all of the polygons must be convex, note that we can

always convert a concave polygon into tyw6 or mora . convex ones

Convex Polygon Concave Polygon

Self-iMgrsecting Pglygon Triangle

N
Shape Representation using Triangles

» We will stick to triangles

» Any convex polygon can be converted to a collection of
triangles

Advantages

» \We are only dealing with one type of polygon, a uniform
representation

» Triangles are the simplest polygon, makes our algorithms
simpler

» Many modeling programs allow us to construct polygonal
models

» Easy to display

» Many efficient algorithms exist for manipulating triangles

Disadvantages

» Not a compact representation
» Not a good approximation for curved surfaces

Other Types of Dynamics
» Articulated figures “ l\ Z

» Rigid bodies connected by joints and hinges
» Used to model the dynamics of human figures

» Vehicle dynamics used to model the dynamics of various kinds

of vehicles Y4 W
» Deformable ob'!ects @ &
» Cloth, soft toys, etc. A A ~

» These are more complicated than what we have seen so far

e

Readings

» Ch. 17 of the textbook
» (lassical Mechanics (3rd Edition) by H. Goldstein and C.P.

Poole Jr.

