
1 / 45

Rigid Bodies

Simulation and Modeling (CSCI 3010U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

2 / 45

Rigid Bodies

!

"

#

!

"

#

Particle Rigid	Body

3 / 45

Particle vs. Rigid Body Dynamics

I State of a particle
I Position p
I Velocity v

I State of a rigid body
I Position p
I Velocity v
I Orientation ◊
I Angular velocity Ê

4 / 45

Coordinate frames

I [x]e is (1, 2) in coordinate frame described by e1 and e2
I What is [x]u, i.e., [x]u expressed in u1 and u2?

5 / 45

Coordinate frames

I x = e1 + 2e2
I x = [u0]e + –[u1]e + —[u2]e
I Note that [x]u = (–, —), so we are interested in finding values

of – and —.

6 / 45

Coordinate frames

[u0]e + – [u1]e + — [u2]e = [x]e
– [u1]e + — [u2]e = [x]e ≠ [u0]e

Ë
[u1]e [u2]e

È C
–
—

D

=
C

–
—

D

=
Ë

[u1]e [u2]e
È≠1

([x]e ≠ [u0]e)

Change of basis

[x]u =
Ë

[u1]e [u2]e
È≠1

([x]e ≠ [u0]e)

7 / 45

Coordinate Frames Exercise - Part 1

What is [x]u?

8 / 45

Coordinate Frames Exercise - Part 2

What is [x]u?

9 / 45

Rigid Bodies in 2D

!
"

#

$

Angular Velocity

I Ê = d◊
dt

I Units are radians per second
I Radian is the angle subtended by an arc whose length is equal

to its radious: ◊ = l
r

Linear Velocity at a Point on the Body

I v = rÊ

10 / 45

Rigid Bodies in 3D

I Unlike 2D, orientation in 3D cannot be described using any
angle.

I There are many schemes for describing rotations in 3D.
I We will use a 3 ◊ 3 rotation matrix R to describe the rotation

of rigit body.
I R is an orthognal matrix

I Its columns are orthonormal, i.e., rT
i rj = 0 if i ”= j, 1 otherwise,

where ri and rj denotes ith and jth columns, respectively
I RT R = I and RRT = I

f
l

0

11 / 45

Rotations in 3D

Matrices for rotations about the x, y, and z axes

Rx(◊) =

S

WU
1 0 0
0 cos ◊ ≠ sin ◊

0 sin ◊ cos ◊

T

XV

Ry(◊) =

S

WU
cos ◊ 0 sin ◊

0 1 0
≠ sin ◊ 0 cos ◊

T

XV

Rz(◊) =

S

WU
cos ◊ ≠ sin ◊ 0
sin ◊ cos ◊ 0

0 0 1

T

XV

12 / 45

Rotations in 3D

It is possible to describe a rotation as a sequence of three rotations
around XY Z coordinate frame axes attached to the moving body

Then rotation matrix R = Rz(“)Rx(◊)Ry(—)
Here, XY Z coordinate system that is attached to the body moves,
while the xyz system is fixed. The rotations are with respect to the
XY Z coordinate system. It is also possible to define these
(elemental) rotations about the axes of a fixed coordinate system
xyz.

13 / 45

Rotations in 3D

Another way to represent a rotation in 3D is to use the axis-angle
convention.

The matrix of a proper rotation R by angle ◊ around the axis
u = (ux, uy, uz)

R =

5
cos ◊ + u2

x (1 ≠ cos ◊) uxuy (1 ≠ cos ◊) ≠ uz sin ◊ uxuz (1 ≠ cos ◊) + uy sin ◊
uyux (1 ≠ cos ◊) + uz sin ◊ cos ◊ + u2

y (1 ≠ cos ◊) uyuz (1 ≠ cos ◊) ≠ ux sin ◊

uzux (1 ≠ cos ◊) ≠ uy sin ◊ uzuy (1 ≠ cos ◊) + ux sin ◊ cos ◊ + u2
z (1 ≠ cos ◊)

6

14 / 45

Rotations in 3D

I We will use a 3x3 rotation matrix R
I We need to find the relationship between angular velocity and

rotation matrix.

We will return to this later.

15 / 45

Equations of Motions for Rigid Bodies

Force acting on a Rigid Body

I Net force acting on an object is the rate of change of its linear
momentum.

dP
dt

= F

I Linear momentum: P = mv, where m is the mass of the
object and v is its linear velocity

F ma

16 / 45

Equations of Motions for Rigid Bodies

Torque acting on a rigid body

I Net torque acting on an object (about point o) is the rate of
change of its angular momentum .

dL
dt

= N

I Angular momentum: L = IÊ, where I is the inertia tensor
and Ê is its angular velocity (about point o)

torque

17 / 45

Torque

I Torque (in this example, clockwise or counter-clockwise):

T = d ◊ F

I When force passes through the center of mass, the associated
d vector is zero; therefore, this force produces no torque or
rotational e�ect

!
Center of mass

"

vector cross product

a Lan ay.az
outofpage

I bn by bz

G1
i laybz byaz j lambz be at kCanby bxay

18 / 45

Center of Mass (COM)

I The center of mass is the mean location of all the mass of the
body.

I The center of mass r is defined as

rx = 1
M

⁄
fl(x, y, z)xdV

ry = 1
M

⁄
fl(x, y, z)ydV

rz = 1
M

⁄
fl(x, y, z)zdV

where fl(x, y, z) is the density at point (x, y, z). M is the total
mass of the object. Also, density = mass

volume .

("#, "%, "&)

World frame

19 / 45

COM as the origin of the body coordinate frame

I Selecting COM as the origin of the body coordinate frame
greatly simpifies the equation of motions

I Any force applied to (or passing through) the COM doesn’t
induce rotation.

Force 1

Force 2

Force 3

Body frame

I Force 1 (translation only)
I Force 2 (translation only)
I Force 3 (both translation &

rotation)

20 / 45

COM - Discretization

Consider a rigid body composed of N point masses mi located at
positions (xi, yi, zi), respectively, in the world coordinate system.
Here i œ [1, N].
Then the center of mass of this rigid body in the world coordinate
system is

rx =
A

ÿ

i

mixi

B

/

A
ÿ

i

mi

B

ry =
A

ÿ

i

miyi

B

/

A
ÿ

i

mi

B

rz =
A

ÿ

i

mizi

B

/

A
ÿ

i

mi

B

world coordinates
r

www.f

21 / 45

COM - Exercise

Compute the center of mass of a rectangular brick with point
masses at its 8 vertices. Assume that vertex 1 is sitting at (1, 1, 1).
The values of point masses are mi, where i œ [1, 8].

Let’s assume that l = 4, h = 1, d = 2 and mi = 1 to get things
started.

22 / 45

COM - Exercise - Python Code

import numpy as np

H ------ G

/| /|

/ E ---- / F

/ / / /

D ------ C /

|/ |/

A ------ B

m = np.ones(8)

r = np.empty((3,8))

l = 4

h = 1

d = 2

r[:,0] = np.array([1,1,1]) # A

r[:,1] = r[:,0] + np.array([l,0,0]) # B

r[:,2] = r[:,0] + np.array([l,h,0]) # C

r[:,3] = r[:,0] + np.array([0,h,0]) # D

r[:,4] = r[:,0] + np.array([0,0,-d]) # E

r[:,5] = r[:,4] + np.array([l,0,0]) # F

r[:,6] = r[:,4] + np.array([l,h,0]) # G

r[:,7] = r[:,4] + np.array([0,h,0]) # H

print(�m:\n�, m)

print(�r:\n�, r)

M = np.sum(m) # Total mass

print(�M:\n�, M)

m_tmp = np.tile(m, (3,1))

print(r * np.tile(m, (3,1)))

center_of_mass =

np.sum(r * np.tile(m, (3,1)), axis=1) / M

print(�center of mass:\n�, center_of_mass)

I

Locations
of

the
point
masses

in
the

world

23 / 45

COM - Example - Program Output

m:
[1. 1. 1. 1. 1. 1. 1. 1.]

r:
[[1. 5. 5. 1. 1. 5. 5. 1.]
[1. 1. 2. 2. 1. 1. 2. 2.]
[1. 1. 1. 1. -1. -1. -1. -1.]]

M:
8.0

[[1. 5. 5. 1. 1. 5. 5. 1.]
[1. 1. 2. 2. 1. 1. 2. 2.]
[1. 1. 1. 1. -1. -1. -1. -1.]]

center of mass:
[3. 1.5 0.]

24 / 45

Inertia Tensor

Inertia tensor provides a concise description of the mass distribution
around the center of mass. fl(x, y, z) denotes density at
center-of-mass centered point (x, y, z). Recall density = mass

volume .

I =

S

WU
Ixx ≠Ixy ≠Ixz

≠Iyx Iyy ≠Iyz

≠Izx ≠Izy Izz

T

XV

Ixx =
⁄

fl(x, y, z)(y2 + z2)dV

Iyy =
⁄

fl(x, y, z)(z2 + x2)dV

Izz =
⁄

fl(x, y, z)(x2 + y2)dV

Ixy = Iyx =
⁄

fl(x, y, z)xydV

Ixz = Izx =
⁄

fl(x, y, z)xzdV

Iyz = Izy =
⁄

fl(x, y, z)yzdV

25 / 45

Inertia Tensor - Discretization

Consider a rigid body composed of N point masses mi located at
center-of-mass centered positions (xi, yi, zi), respectively, in the
world coordinate system. Here i œ [1, N].

I =

S

WU
Ixx ≠Ixy ≠Ixz

≠Iyx Iyy ≠Iyz

≠Izx ≠Izy Izz

T

XV

Ixx =
ÿ

i

mi(y2
i + z2

i)

Iyy =
ÿ

i

mi(z2
i + x2

i)

Izz =
ÿ

i

mi(x2
i + y2

i)

Ixy = Iyx =
ÿ

i

mixiyi

Ixz = Izx =
ÿ

i

mixizi

Iyz = Izy =
ÿ

i

miyizi

world
system

26 / 45

Inertia Tensor - Exercise

Compute the center of mass of a rectangular brick with point
masses at its 8 vertices. Assume that vertex 1 is sitting at (1, 1, 1).
The values of point masses are mi, where i œ [1, 8].

Let’s assume that l = 4, h = 1, d = 2 and mi = 1 to get things
started.

27 / 45

Inertia Tensor - Exercise - Python Code

continued from the previous example

rp = r - np.tile(center_of_mass , (8,1)).T

print(�rp:\n�, rp)

I = np.empty((3,3))

I[0,0] = np.sum(np.multiply(np.power(rp[1,:],2) + np.power(rp[2,:],2), m))

I[1,1] = np.sum(np.multiply(np.power(rp[2,:],2) + np.power(rp[0,:],2), m))

I[2,2] = np.sum(np.multiply(np.power(rp[0,:],2) + np.power(rp[1,:],2), m))

I[0,1] = I[1,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[1,:]), m))

I[0,2] = I[2,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[2,:]), m))

I[1,2] = I[2,1] = np.sum(np.multiply(np.multiply(rp[1,:], rp[2,:]), m))

print(�I:\n�, I)

com

I

28 / 45

Intertia Tensor - Exercise - Program Output

rp:
[[-2. 2. 2. -2. -2. 2. 2. -2.]
[-0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5]
[1. 1. 1. 1. -1. -1. -1. -1.]]

I:
[[10. 0. 0.]
[0. 40. 0.]
[0. 0. 34.]]

29 / 45

Inertia Tensor in the Body Coordinate Frame

I The inertia tensor I that we just computed is expressed in the
world coordinate frame. Consequently it changes as the
orientation of the rigid body changes.

I We can express the inertia tensor in the body coordinate frame.
I We refer to inertia tensor in the body coordinate frame as Ibody.
I Ibody doesn’t change as the orientation of the body changes.
I Ibody is diagonal, i.e.,

Ibody =

S

WU
I11 0 0
0 I22 0
0 0 I33

T

XV

I Inverse of Ibody:

I≠1
body =

S

WU

1
I11

0 0
0 1

I22
0

0 0 1
I33

T

XV

g
A large value I
means rot around
x axis will be
slow compared to
other anes for a
similar force

30 / 45

Computing Ibody

Option 1

Diagonalize I
I Compute eigenvectors and eigenvalues of I
I Eigenvalues form the diagonal matrix Ibody
I Eigenvectors form the 3-by-3 rotation matrix R that describes

the orientation of the rigid body
I This is the preferred approach

Option 2

Use 3-by-3 rotation matrix R that describes the orientation

of the rigid body

I Ibody = RT IR

y

com Position

471
I mass
angular
effects

g
9

my Rot

31 / 45

Inertia Tensor - Rotated Body Example - Python Code

Continued from previous example

from scipy.spatial.transform import Rotation as R

rot_mat = R.from_euler(�y�,45, degrees=True).as_matrix()

print(�rot_mat:\n�, rot_mat)

Note: 1) rp; 2) center of mass; and 3) overwriting r

r = np.dot(rot_mat, rp) + np.tile(center_of_mass, (8,1)).T

print(�rotated_r:\n�, r)

center_of_mass = np.sum(r * np.tile(m, (3,1)), axis=1) / M

print(�center of mass:\n�, center_of_mass)

rp = r - np.tile(center_of_mass , (8,1)).T

print(�rp:\n�, rp)

I = np.empty((3,3))

I[0,0] = np.sum(np.multiply(np.power(rp[1,:],2) + np.power(rp[2,:],2), m))

I[1,1] = np.sum(np.multiply(np.power(rp[2,:],2) + np.power(rp[0,:],2), m))

I[2,2] = np.sum(np.multiply(np.power(rp[0,:],2) + np.power(rp[1,:],2), m))

I[0,1] = I[1,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[1,:]), m))

I[0,2] = I[2,0] = np.sum(np.multiply(np.multiply(rp[0,:], rp[2,:]), m))

I[1,2] = I[2,1] = np.sum(np.multiply(np.multiply(rp[1,:], rp[2,:]), m))

print(�I:\n�, I)

Computing I_body using rotation matrix

I_body = np.dot(np.dot(rot_mat.T, I), rot_mat)

print(�I_body:\n�, I_body)

Computing I_body using eigenvalues and eigenvectors

w, v = np.linalg.eig(I)

print(�eigenvalues:\n�, w)

print(�eigenvectors:\n�, v)

2

I LEFT
781k

I
RIR I

body

32 / 45

Inertia Tensor - Rotated Body Example - Program Output

rot_mat:

[[0.70710678 0. 0.70710678]

[0. 1. 0.]

[-0.70710678 0. 0.70710678]]

rotated_r:

[[2.29289322 5.12132034 5.12132034 2.29289322 0.87867966 3.70710678

3.70710678 0.87867966]

[1. 1. 2. 2. 1. 1.

2. 2.]

[2.12132034 -0.70710678 -0.70710678 2.12132034 0.70710678 -2.12132034

-2.12132034 0.70710678]]

center of mass:

[3. 1.5 0.]

rp:

[[-0.70710678 2.12132034 2.12132034 -0.70710678 -2.12132034 0.70710678

0.70710678 -2.12132034]

[-0.5 -0.5 0.5 0.5 -0.5 -0.5

0.5 0.5]

[2.12132034 -0.70710678 -0.70710678 2.12132034 0.70710678 -2.12132034

-2.12132034 0.70710678]]

I:

[[22. 0. -12.]

[0. 40. 0.]

[-12. 0. 22.]]

I_body:

[[3.40000000e+01 0.00000000e+00 8.45096405e-15]

[0.00000000e+00 4.00000000e+01 0.00000000e+00]

[7.79029649e-15 0.00000000e+00 1.00000000e+01]]

eigenvalues:

[34. 10. 40.]

eigenvectors:

[[0.70710678 0.70710678 0.]

[0. 0. 1.]

[-0.70710678 0.70710678 0.]]

33 / 45

Inertia Tensor

I Inertia tensors are available for many canonical objects:
rectangles, circles, spheres, etc.

I E�cient algorithms exist to compute inertia tensor, center of
mass, body coordinate frames a given polygonal model of an
object

I Many tools exist to construct polygonal models of 2D/3D rigid
objects

34 / 45

Body coordinate frame

Attach a coordinate frame to a rigid body

Body frame

! translation

" orientation

#$%&'

#(%)*&

Center of mass

I Origin: center of mass(defined in the
world frame)

I Axes: defined in the world coordinate
frame by a 3-by-3 rotation matrix R.
Columns of R define the x, y and z axes
of the body coordinate frame
I Inertia tensor Ibody is constant and

diagonal in this frame
I From body coordinate frame to world

coordinate frame

pworld = Rpbody + x

Pbody world

35 / 45

World and Body Coordinate Frames

World coordinate frame

I Collision detection and response
I Display and visualization

Body coordinate frame

I Compute quantitites such as inertia tensor once and store them
for later use.

36 / 45

Rigid Body Dynamics

Position ! 1	by	3	vector

Orientation " 3 by	3	rotation	matrix

Linear	Momentum # 1	by	3	vector

Angular	Momentum $ 1 by	3	vector

Mass % scalar

Inertia tensor &'()* 3 by	3	matrix	(in	body	 frame)

Linear velocity + 1	by	3 vector	

Angular velocity	 , 1 by	3	vector

Inertia	tensor &-. 3	by 3	matrix	(in	world	frame)

Constants

State variables

Derived quantities

Total force / 1	by	3	vector

Total	torque 0 1 by	3	vector

37 / 45

Rigid Body Dynamics

Linear e�ects

I dx/dt = v
I dP/dt = F
I v = P/m

Angular e�ects

I dR/dt = ÊúR, where

Êú =

S

WU
0 ≠Êx Êy

Êz 0 ≠Êx

Êy Êz 0

T

XV

I dL/dt = N
I Ê = I≠1L
I I≠1 = RI≠1

bodyRT

y
3 3 not matrix

38 / 45

Rigid Body Dynamics

// x - position
state[0] = x[0];
state[1] = x[1];
state[2] = x[2];

// R - orientation
state[3] = R[0][0];
state[4] = R[1][0];
state[5] = R[2][0];
state[6] = R[0][1];
state[7] = R[1][1];
state[8] = R[2][1];
state[9] = R[0][2];
state[10] = R[1][2];
state[11] = R[2][2];

// P - linear momentum
state[12] = P[0];
state[13] = P[1];
state[14] = P[2];

// L - angular momentum
state[15] = L[0];
state[16] = L[1];
state[17] = L[2];

// t – OSP needs it
state[18] = 0.0

// dx/dt = v
rate[0] = v[0];
rate[1] = v[1];
rate[2] = v[2];

// dR/dt = w* R
double[][] Rdot =
mult(star(omega), R);
rate[3] = Rdot[0][0];
rate[4] = Rdot[1][0];
rate[5] = Rdot[2][0];
rate[6] = Rdot[0][1];
rate[7] = Rdot[1][1];
rate[8] = Rdot[2][1];
rate[9] = Rdot[0][2];
rate[10] = Rdot[1][2];
rate[11] = Rdot[2][2];

// dP/dt = force
rate[12] = force[0];
rate[13] = force[1];
rate[14] = force[2];

// dL/dt = torque
rate[15] = torque[0];
rate[16] = torque[1];
rate[17] = torque[2];

// dt/dt = 1
rate[18] = 1;

odeSolver.step();

// x
x[0] = state[0];
x[1] = state[1];
x[2] = state[2];

// R
R[0][0] = state[3];
R[1][0] = state[4];
R[2][0] = state[5];
R[0][1] = state[6];
R[1][1] = state[7];
R[2][1] = state[8];
R[0][2] = state[9];
R[1][2] = state[10];
R[2][2] = state[11];
R = orthonormalize(R);

// P
P[0] = state[12];
P[1] = state[13];
P[2] = state[14];

// L
L[0] = state[15];
L[1] = state[16];
L[2] = state[17];

Iinv = mult(R, mult(IbodyInv, transpose(R)));
omega = mult(Iinv, L);

Init:	Flatten	state	variables	
into	a	state	vector

Rate[]	encodes	 1st order	
ODE	for	our	system

Let	ODE	solve	the	state	and	
then	copy	the	state	back	to	
our	state	variables	!, #, $

and	%.

11

39 / 45

Rigid Body Dynamics: Numerical Considerations

I Over time numerical errors accumulate in rotation matrix R
I This e�ects our computation of I and Ê
I Orthonormalize R after every timestep

Orthonormalization

1. Normalize R1
2. R3 = R1 ◊ R2 (normalize R3)
3. R2 = R3 ◊ R1 (normalize R2)

Here Ri represent the i-th row of matrix R
Errors were shifted in the matrix

40 / 45

Representing Rotations

I We chose to represent rotations as 3-by-3 rotation matrices
I Quaternions can be used to represent rotations as well
I Most rigid body dynamics systems use quaterions
I See Ch. 17 of the textbook

41 / 45

Representing Rigid Bodies

I A rigid body has a shape that does not change over time
I It can translate through space and rotate
I A rigid body occupies a volume of space
I The distribution of its mass over this volume determines its

motion or dynamics

Shape representation

I Shape representation is studied extensively in computer
graphics and some areas of mechanical engineering and
mathematics

I There are many ways of representing shape, each with a
di�erent set of advantages and disadvantages

I We will stick to polygons

42 / 45

Shape Representation using Polygons

I The surface of the object is represented by a collection of
polygons

I The polygons are connected across their edges to form a
continuous surface

I In order to have a well behaved representation we need to
constrain our polygons

I First all of the polygons must be convex, note that we can
always convert a concave polygon into two or more convex ones

Convex Polygon Concave Polygon Non-planar Polygon

Self-intersecting Polygon Triangle

00

43 / 45

Shape Representation using Triangles

I We will stick to triangles
I Any convex polygon can be converted to a collection of

triangles

Advantages

I We are only dealing with one type of polygon, a uniform
representation

I Triangles are the simplest polygon, makes our algorithms
simpler

I Many modeling programs allow us to construct polygonal
models

I Easy to display
I Many e�cient algorithms exist for manipulating triangles

Disadvantages

I Not a compact representation
I Not a good approximation for curved surfaces

O

44 / 45

Other Types of Dynamics

I Articulated figures
I Rigid bodies connected by joints and hinges
I Used to model the dynamics of human figures

I Vehicle dynamics used to model the dynamics of various kinds
of vehicles

I Deformable objects
I Cloth, soft toys, etc.

I These are more complicated than what we have seen so far

7

a

A

two

45 / 45

Readings

I Ch. 17 of the textbook
I Classical Mechanics (3rd Edition) by H. Goldstein and C.P.

Poole Jr.

