
94 / 134

Bouncing ball
Collision detection

1. Approximate time to collide tc = x
v

2. Set x = 0 and v = ≠v(t + tc)
I Flip v to indicate that the ball is now going back up again

Problem

v is larger than had we calculated tc exactly right (that’s because
the particle is under constant acceleration). Consequently energy is
not conserved.
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Bouncing ball
I Use the Law of Conservation of Energy to compute the velocity

of the ball when it touches ground.
I The ball was released at height h. We know the total energy of

the system, which is mgh. At the start the kinetic energy is 0.
I When the ball touches the ground, its potential energy reduces

to 0. Since the total energy remains the same, all of its energy
is now kinetic energy.

1
2mv2 = mgh

v =


2gh

i.e., set x = 0 and v = ≠
Ô

2gh at collision time.



97 / 134

Bouncing ball

Ball doesn’t enter the floor Energy is conserved
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2D elastic band
Simulate a ball (point mass) attached to the origin via an elastic
band (or a spring sitting in a plane).

I We assume that the rest length of the band is 0.
I Hook’s law describes the relationship between the extension of

the band and the force it applies on the attached ball

Hook’s law in 1D

F = ≠kx,

where x is the displacement from the rest length (in this case 0),
and k is the spring constant for the elastic band. F is the force on
the ball.
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2D elastic band

Option 1
I Use Hook’s Law in 2D

F = ≠k
3Ò

x2 + y2
4

So

Fx = ≠k
3Ò

x2 + y2
4

cos(◊)

Fy = ≠k
3Ò

x2 + y2
4

sin(◊)
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2D elastic band

Option 2
Replace 1 2D elastic band with 2
1D elastic bands. The first band
sits along the x-axis; whereas, the
second band sits along the y-axis.

Fx = ≠kx

Fy = ≠ky

!

"

2	elastic	bands
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2D elastic band
Add a damping force that is proportional to the velocity of the ball

Model

Fx = ≠kx ≠ cvx

Fy = ≠ky ≠ cvy

How many state variables?

Notice that we are consider t as a state variable as well. This is not
exactly right, but it makes for easier implmentations.
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2D elastic band
Add a damping force that is proportional to the velocity of the ball

Model

Fx = ≠kx ≠ cvx

Fy = ≠ky ≠ cvy

How many state variables?
5 = 2 for positions, 2 for velocity and 1 for time

Notice that we are consider t as a state variable as well. This is not
exactly right, but it makes for easier implmentations.
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2D elastic band
Interaction
I User interacts with the ball by dragging it to a new location.
I Dragging to the new location changes the x and y extensions of

the elastic band, e�ectively changing the forces acting on the
ball.

I This is similar to grasping a real ball attached to a spring, and
then letting go of the ball.
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Mass-Spring systems in 3D
Consider a spring with rest length l and spring constant k. The
spring is connected at two point masses located at pa = (xa, ya, za)
and pb = (xb, yb, zb), respectively. Our goal is to estimate the
spring force exerted on these masses.
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Spring Deformation and Axis
Spring axis vector:

v = (xb ≠ xa, yb ≠ ya, zb ≠ za)

Current length of the spring:

lcurrent = ÎvÎ =
Ò

(xb ≠ xa)2 + (yb ≠ ya)2 + (zb ≠ za)2

Deformation:
d = lcurrent ≠ lrest

The deformation is positive if the spring is extended, and it is
negative if the spring is compressed.
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Hook’s Law
Unit-vector along spring axis:

v̂ = 1
lcurrent

(xb ≠ xa, yb ≠ ya, zb ≠ za)

Use the unit vector v̂ to compute force direction. Recall that this
vector points towards pb. If the spring is extended, the mass at
location pb will experience a force in the direction of the mass at
location pa. Therefore, the spring exerts the following force on the
mass at location p:

fon point mass at pb = ≠kdv̂

This expression also works when the spring is compressed. When the
spring is compressed, d is negative. Therefore, the force on mass at
pb is along v̂.
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Hook’s Law
Similarly, the force on the mass at location pa is

fon point mass at pa = +kdv̂.

This is just the opposite of the force on mass at p
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Projectile motion

mxÕÕ = ≠“xÕ

myÕÕ = ≠“yÕ ≠ mg

Here “ is the friction constant, m
is the mass of the particle, and g
is the acceleration due to gravity.
This model doesn’t take into
account the e�ects of earth’s
gravitational field.

!

"

#

$

Downward	force	
due	to	gravity

Air	Drag
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Projectile motion
Gravitational force between two masses M and m with is given by
Newton’s Law of Universal Gravitation

F = GM

(R + y)2 ,

where R + y is the distance between their centres. G is the
gravitational constant.

G = 6.674 ◊ 10≠11N(m/kg)2

The value of g is merely a simplification given by

g = GM

R2 .
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Projectile motion
To model a projectile near the surface of the earth we use

mxÕÕ = ≠“xÕ

myÕÕ = ≠“yÕ ≠ GM

(R + y)2

Unlike previous models that you have seen in this course, the above
equations have no analytical solution. You’ll have to solve them
numerically.
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Free-falling particle

mg-

dF ! I Force acting on a particle of mass m falling under
gravity is

F = ≠mg + Fd,

where Fd is the drag force experienced by the
particle as it moves through the air.

I Fd is a velocity dependent drag force. It increases
with velocity and at some point, it will become
equal to the mg, i.e., Fd = mg. The velocity at
which this occurs is referred to the terminal
velocity of the particle.

I Once terminal velocity is achieved the particle
experiences 0 net force. The particle still
continues to fall at a constant velocity. Why is
that?
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Free-falling particle
Terminal velocity
The velocity at which the motion of an object through a fluid is
constant due to the drag force exerted by that fluid.
Terminal velocity depends upon both the particle and the medium
through which it is moving.
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Example: Falling pebble
Consider the fall of a pebble of mass 10≠2 kg. The terminal velocity
of this pebble is 30 m/s.

I How long with it take for this pebble to achieve terminal
velocity?

I How much distance will this pebble cover before it achieves
terminal velocity?

Observation: The pebble will cover around 50 m to achieve the
terminal velocity. This will take around 3 s.

So if we are dealing with a pebble simulation across these distances
(or times), we need to take into account terminal velocity.
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Example: Falling pebble
Takeaway: even when modeling simple systems, such as a free
falling particle, we need to carefully evaluate the conditions so
as not to miss important e�ects.
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Describing drag in terms of terminal velocity
I Linear drag

F1,d = C1v = mg
v

v1,t

I Quadratic drag

F2,d = C2v2 = mg

A
v

v1,t

B2
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Modeling a falling co�ee filter
Sketch
I Observe a falling co�ee filter and record positions vs. times.
I Estimate velocities and accelerations via finite di�erences.
I Estimate terminal velocity. Recall that the object falls with

constant velocity once terminal velocity is achieved.
I Identify the relationship between acceleration and velocity. Is it

linear or quadratic?
I Right down the equations taking into account your findings.
I Run the simulation and see if it matches your observations.
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Modeling a falling co�ee filter

I Observe a falling co�ee filter and
record positions vs. times.

I Estimate velocities and
accelerations via finite di�erences.

I Estimate terminal velocity. Recall
that the object falls with constant
velocity once terminal velocity is
achieved.

I Identify the relationship between
acceleration and velocity. Is it linear
or quadratic?

I Right down the equations taking
into account your findings.

I Run the simulation and see if it
matches your observations.
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Modeling a falling co�ee filter
Takeaway: it is sometimes possible to infer dynamics from
empirical data
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Simulating multiple objects
I So far we have simulated single objects
I Now we discuss how to simulate multiple objects?

I The number of objects is a parameter for the simulation.
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Simulating a collection of balls in a square
I Balls move in 2D
I Random initial positions and velocities
I Balls move under the influence of gravity
I Balls bounce o� the walls
I Balls pass through each other (i.e., no collisions between balls)
I No friction
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Simulating a collection of balls in a square
Question 1

Say we are interested in simulating n balls in a square. What is the
state size of our simulation?

Answer 1

4n, (x, y) locations and (vx, vy) velocities for each ball.

Question 2

How do we set up the initial state for our simulation, i.e., the initial
locations and initial velocities for each ball?

Answer 2

Random positions and velocities.
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Simulating a collection of balls in a square
What are we missing in this simulation?

I Not handling collisions between balls
I If only a few balls in a very large square, ball-ball collisions may

be rare event.
I If a lot of balls crammed in a small space, we can’t really ignore

ball-ball collisions.
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Ball-ball collisions
I Ball-ball collisions are di�cult to do e�ciently.

I Unlike ball-wall collisions, where only one object is moving, in
ball-ball collision, both objects are moving.

Naive approach

I At each time step, inspect each pair for possible collision.
I For n balls this leads to n2 inspections.

Other things to consider

What if three balls collide with each other at the same instant?
What if n balls collide with each other at the same instant?
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Object-object collisions
I E�cient collisions between multiple objects is very challenging
I Most simulations only consider these when absolutely necessary

I Gas molecules are small, so when simulating low-density gases in
large volumes, inter-molecules collisions are sometimes ignored.
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What other things have we ignored in our simulation
containing multiple balls in a square?

Brainstorm
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What other things have we ignored in our simulation
containing multiple balls in a square?

I Ball-wall collisions ignore the e�ects of impact on the wall (and
the balls)
I If the balls were ball bearings, and the walls were made of thin

aluminum then each collision would dent the wall.
I The walls will get bent out of shape over time.
I How would you model walls that bends overtime? This require

some very complicated physics, large computational power, and
sophisticated numerical techniques.

I We also didn’t model the color of the balls
I This would be of interest if we are intrested in light bounces or

heat transfer.
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Guidlines
I We need carefully identify what really needs to be modeled and

simulated.
I We can make simulations arbitrarily complex by considering

more things.
I This makes it harder to produce simulations.
I Simulations will be less e�cient.
I Simulations might become less useful.

I We need to know where to draw the line.

Correctly determining the applications of the simulation is an
important first step in getting the model right
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Summary
I Input, output and state variables
I Di�erential equations are used to model the behavior of state

variables
I Numerical solvers for solving di�erential equations

I Good numerical solvers really only exist for degree 1 di�erential
equations.

I Transform higher order di�erential equations to multiple
first-order di�erential equations.
I This introduces extra state variables
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Summary
I Use of indirect means to determine whether or not our

simulation is correct.
I We used our knowledge of the law of conservation of energy to

identify the problem with our simulation
I Interactions
I Projectile motion

I Our first encounter with an ODE that has no analytical solution
I Drag

I Terminal velocity
I First exposure to infering dynamics from empricial data
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Summary
Simulating multiple objects
I How to model the system?
I How to manage state space?
I Performance
I Problem set up or initialization
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