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Discuss in class

Consider a mass-spring system that lives in a flat (2D) world. One end of the spring is
connected to a fixed hinge sitting at location . The other end of the spring is connected
to a mass of value  kg. When the spring is at its rest length, the the mass is sitting at
location . Consider that you’ve moved the mass to a new location , and answer
the following questions. Let  represents the spring constant.

1. Is the spring extended or squished?

2. What do you think will happen if you release the mass at this point?

3. Compute the force acting on the mass when it is sitting at location . You’ll need to
express it in terms of .
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Weconstruct the equations as follows
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Implementation
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Discuss in class

Consider a mass-spring system that lives in a flat (2D) world. One end of the spring is
connected to a fixed hinge sitting at location . The other end of the spring is connected
to a mass . The rest length of this spring is , and the Hooke’s coefficient is . Provide the
Simulation class that simulates this mass spring system.

The following files are provided for you, which will use the Simulation class provided by you.
It assumes that your class is available in file sim.py.
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util.py
Includes routines used by mass-spring-2d.py file.

"""
author: Faisal Z. Qureshi
email: faisal.qureshi@uoit.ca
website: http://www.vclab.ca
license: BSD
"""

import pygame

# set up the colors
BLACK = (0, 0, 0, 255)
WHITE = (255, 255, 255, 0)
RED = (255, 0, 0, 255)
GREEN = (0, 255, 0, 255)
BLUE = (0, 0, 255, 255)

def load_image(name):
    image = pygame.image.load(name)
    return image

class MyCircle(pygame.sprite.Sprite):
    def __init__(self, color, width, height, alpha=255):
        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.Surface([width, height], 
flags=pygame.SRCALPHA)

        self.rect = self.image.get_rect()
        cx = self.rect.centerx
        cy = self.rect.centery
        pygame.draw.circle(self.image, color, (width/2, height/2), cx, cy)
#        self.rect = self.image.get_rect()

        self.picked = False

    def set_pos(self, pos):
        self.rect.x = pos[0] - self.rect.width//2
        self.rect.y = pos[1] - self.rect.height//2

    def update(self):
        pass



mass-spring-2d.py
Calls your Simulation class to do the heaving lifting.

class MyRect(pygame.sprite.Sprite):
    def __init__(self, color, width, height, alpha=255):
        pygame.sprite.Sprite.__init__(self)

        self.image = pygame.Surface([width, height], 
flags=pygame.SRCALPHA)

        self.rect = self.image.get_rect()
        pygame.draw.rect(self.image, color, self.rect)

        self.picked = False

    def set_pos(self, pos):
        self.rect.x = pos[0] - self.rect.width//2
        self.rect.y = pos[1] - self.rect.height//2

    def update(self):
        pass

def to_screen(x, y, win_width, win_height):
    return win_width//2 + x, win_height//2 - y

def from_screen(x, y, win_width, win_height):
    return x - win_width//2, win_height//2 - y

class MyText():
    def __init__(self, color, background=WHITE, antialias=True, 

fontname="comicsansms", fontsize=16):
        pygame.font.init()
        self.font = pygame.font.SysFont(fontname, fontsize)
        self.color = color
        self.background = background
        self.antialias = antialias
    
    def draw(self, str1, screen, pos):
        text = self.font.render(str1, self.antialias, self.color, 

self.background)
        screen.blit(text, pos)

"""
author: Faisal Z. Qureshi



email: faisal.qureshi@uoit.ca
website: http://www.vclab.ca
license: BSD
"""

import pygame, sys
import matplotlib.pyplot as plt
import numpy as np

# import sim_rk4 as Simulation
import sim as Simulation
import util

def main():
    # sim title
    title = 'Mass-Spring System'

    # initializing pygame
    pygame.init()

    # clock object that ensure that animation has the same
    # on all machines, regardless of the actual machine speed.
    clock = pygame.time.Clock()

    # fonts
    text = util.MyText(util.BLACK)

    # setting up a sprite group, which will be drawn on the
    # screen
    ball = util.MyRect(color=util.BLUE, width=32, height=32)
    center = util.MyRect(color=util.RED, width=4, height=4)
    x_axis = util.MyRect(color=util.BLACK, width=620, height=1)
    y_axis = util.MyRect(color=util.BLACK, width=1, height=460)
    my_group = pygame.sprite.Group([x_axis, y_axis, ball, center])

    # set up drawing canvas
    # top left corner is (0,0) top right (640,0) bottom left (0,480)
    # and bottom right is (640,480).
    win_width = 640
    win_height = 480
    screen = pygame.display.set_mode((win_width, win_height))
    pygame.display.set_caption(title)

    # setting up simulation
    sim = Simulation.Simulation(title)
    # sim.init(state=np.array([200,200,0,0], dtype='float32'), mass=100., 



k=.01, l=200.) Try some other values
    sim.init(state=np.array([200,200,0,0], dtype='float32'), mass=10., 

k=10, l=200.)
    sim.set_time(0.0)
    sim.set_dt(0.1)

    print ('--------------------------------')
    print ('Usage:')
    print ('Press (r) to start/resume simulation')
    print ('Press (p) to pause simulation')
    print ('Press (q) to quit')
    print ('Press (space) to step forward simulation when paused')
    print ('Use mouse left button down to move mass around (only when 

simulation paused)')
    print ('--------------------------------')

    # Transformation to screen coordinates
    # Here 0,0 refers to simulation coordinates
    center.set_pos(util.to_screen(0, 0, win_width, win_height))
    x_axis.set_pos(util.to_screen(0, 0, win_width, win_height))
    y_axis.set_pos(util.to_screen(0, 0, win_width, win_height))

    while True:
        # 30 fps
        clock.tick(30)

        # update sprite x, y position using values
        # returned from the simulation
        ball.set_pos(util.to_screen(sim.state[0], sim.state[1], win_width, 

win_height))

        event = pygame.event.poll()
        if event.type == pygame.QUIT:
            pygame.quit()
            sys.exit(0)

        if event.type == pygame.KEYDOWN and event.key == pygame.K_p:
            sim.pause()
            continue
        elif event.type == pygame.KEYDOWN and event.key == pygame.K_r:
            if not ball.picked:
                sim.resume()
            continue
        elif event.type == pygame.KEYDOWN and event.key == pygame.K_q:
            break
        elif event.type == pygame.MOUSEBUTTONDOWN and event.button == 1: # 



sim.py
Starter code for your simulation class.

LEFT=1
            if sim.paused:
                if ball.rect.collidepoint(event.pos):
                    ball.picked = True
        elif event.type == pygame.MOUSEMOTION:
            if ball.picked:
                x, y = util.from_screen(event.pos[0], event.pos[1], 

win_width, win_height)
                sim.set_state(np.array([x, y, 0, 0], dtype='float32'))
        elif event.type == pygame.MOUSEBUTTONUP and event.button == 1:
            if ball.picked:
                ball.picked = False
                sim.set_state(np.array([x, y, 0, 0], dtype='float32'))
        else:
            pass

        # clear the background, and draw the sprites
        screen.fill(util.WHITE)
        my_group.update()
        my_group.draw(screen)
        text.draw("Time = %f" % sim.cur_time, screen, (10,10))
        text.draw("x = %f" % sim.state[0], screen, (10,40))
        text.draw("y = %f" % sim.state[1], screen, (10,70))
        if ball.picked:
            text.draw("Picked. (Simulation disabled)", screen, (10,100))
        pygame.display.flip()

        # update simulation
        if not sim.paused:
            sim.step()
        elif not ball.picked and event.type == pygame.KEYDOWN and 

event.key == pygame.K_SPACE:
                sim.step()
        else:
            pass
    
    pygame.quit()
    sys.exit(0)

if __name__ == '__main__':
    main()



"""
author: Faisal Qureshi
email: faisal.qureshi@uoit.ca
website: http://www.vclab.ca
license: BSD
"""

import numpy as np

class Simulation:
    def __init__(self, title):
        self.paused = True # starting in paused mode
        self.title = title
        self.cur_time = 0
        self.dt = 0.033 # 33 millisecond, which corresponds to 30 fps
        # Fix this

    def init(self, state, mass, k, l):
        # Fix this
        pass

    def set_state(self, state):
        # Fix this
        pass

    def set_time(self, cur_time=0):
        self.cur_time = cur_time

    def set_dt(self, dt=0.033):
        self.dt = dt

    def step(self):
        # Fix this 
        pass

    def pause(self):
        self.paused = True

    def resume(self):
        self.paused = False

    def save(self, filename):
        # Ignore this
        pass

    def load(self, filename):
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Code execution
We will run your code as follows:

Submission
Nothing to submit. Please show your work to the instructor. Due in class.

        # Ignore this
        pass

$ python mass-spring-2d.py
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