
2D Mass-Spring System
Simulation and Modeling (CSCI 3010U)

Faisal Qureshi
Faculty of Science, Ontario Tech University

http://vclab.science.ontariotechu.ca

Discuss in class

Consider a mass-spring system that lives in a flat (2D) world. One end of the spring is
connected to a fixed hinge sitting at location . The other end of the spring is connected
to a mass of value kg. When the spring is at its rest length, the the mass is sitting at
location . Consider that you’ve moved the mass to a new location , and answer
the following questions. Let represents the spring constant.

1. Is the spring extended or squished?

2. What do you think will happen if you release the mass at this point?

3. Compute the force acting on the mass when it is sitting at location . You’ll need to
express it in terms of .

(0, 0)
1

(3, 4) (5, 7)
k

(5, 7)
k

Jan28,202

c Restlengthof the spring
354

ftp.fffff
fffE

Iggy
is current lengthof thespring

1572
135495
574

1 Extended

2 Mass will oscillate along the line joining 0,0 and 5,7

The man will oscillate around pointwhere the
distance from

origin is 5

3 Force on the mass due to a spring willi spring constant k

F
Kay

deformation

spring deformation
574 5

Magnitudeoftheforce
K 574 5

Direction of the force g
Unit vector

g
151 7

FFYirtgn.io
M Ii Hook's law describes the relationship

ffa

mm fed and

I Kif
model as two elastic bands

Fx Kx

Fy ky

May try make use a he

may 2 key m Ky of_ry

state variables 4 statevariables x y Tx Ny

ny

no

Fy Fy sino

A 2D elastic band with damping

Ex Kx Cva

is as or

drag is proportional
to velocity but in

the opposite direction

To solve this system we need to setup the systemof
ODES

ʰ8
cnn.ie

in spring exerts force

on both mares Ma

meets mn

i Theforceon botht
g masses in the same

but oppositet
z

gmb a c Spring axis vector

w̅ Pj Pa

ghost Lana g ya z a

iffier
fi

i current length of the spring

lament Iv11 fKb xa Yb Ya Zb Za

iii deformation

D lament Crest

positive d suggests that the spring is
extended

Iv Unit vector along spring axis

i

C Force in mass my

E Kd eR

Lvi Done on mass Ma

É n c I

Aside state variables 12

i.si i.i i.i f
Exerist

F ma

Anurag
for
Iathe Indfther

eq's

Mb Fb Mbdb

1

Face

of ri ma Fay
d v

Ma Past

airdragProstinfitT.f.nu
Downward forcedue to gravity

a

LEE

Force in y direction Dy mg

Weconstruct the equations as follows

Ma Dx

my y mg to
be x

may One

If
veryyStatevariables 4

79 ra ry
mdr try mg

dairy

Forceof gravity between two masses M and in at

distance Rty between their centers

g.am massofearth
approximation

Earth's radius

mx 8
my Oy fly

a analytical solution

Need to solve it numerically

2D Mass Spring System
Implementation

Simulation and Modeling (CSCI 3010U)

Faisal Qureshi
Faculty of Science, Ontario Tech University

http://vclab.science.ontariotechu.ca

Discuss in class

Consider a mass-spring system that lives in a flat (2D) world. One end of the spring is
connected to a fixed hinge sitting at location . The other end of the spring is connected
to a mass . The rest length of this spring is , and the Hooke’s coefficient is . Provide the
Simulation class that simulates this mass spring system.

The following files are provided for you, which will use the Simulation class provided by you.
It assumes that your class is available in file sim.py.

(0, 0)
m l k

rest length l

current length JIT
deforestation currentlength l a y
spring axis x y

to
1m ftp.la y

util.py
Includes routines used by mass-spring-2d.py file.

"""
author: Faisal Z. Qureshi
email: faisal.qureshi@uoit.ca
website: http://www.vclab.ca
license: BSD
"""

import pygame

set up the colors
BLACK = (0, 0, 0, 255)
WHITE = (255, 255, 255, 0)
RED = (255, 0, 0, 255)
GREEN = (0, 255, 0, 255)
BLUE = (0, 0, 255, 255)

def load_image(name):
 image = pygame.image.load(name)
 return image

class MyCircle(pygame.sprite.Sprite):
 def __init__(self, color, width, height, alpha=255):
 pygame.sprite.Sprite.__init__(self)

 self.image = pygame.Surface([width, height],
flags=pygame.SRCALPHA)

 self.rect = self.image.get_rect()
 cx = self.rect.centerx
 cy = self.rect.centery
 pygame.draw.circle(self.image, color, (width/2, height/2), cx, cy)
self.rect = self.image.get_rect()

 self.picked = False

 def set_pos(self, pos):
 self.rect.x = pos[0] - self.rect.width//2
 self.rect.y = pos[1] - self.rect.height//2

 def update(self):
 pass

mass-spring-2d.py
Calls your Simulation class to do the heaving lifting.

class MyRect(pygame.sprite.Sprite):
 def __init__(self, color, width, height, alpha=255):
 pygame.sprite.Sprite.__init__(self)

 self.image = pygame.Surface([width, height],
flags=pygame.SRCALPHA)

 self.rect = self.image.get_rect()
 pygame.draw.rect(self.image, color, self.rect)

 self.picked = False

 def set_pos(self, pos):
 self.rect.x = pos[0] - self.rect.width//2
 self.rect.y = pos[1] - self.rect.height//2

 def update(self):
 pass

def to_screen(x, y, win_width, win_height):
 return win_width//2 + x, win_height//2 - y

def from_screen(x, y, win_width, win_height):
 return x - win_width//2, win_height//2 - y

class MyText():
 def __init__(self, color, background=WHITE, antialias=True,

fontname="comicsansms", fontsize=16):
 pygame.font.init()
 self.font = pygame.font.SysFont(fontname, fontsize)
 self.color = color
 self.background = background
 self.antialias = antialias

 def draw(self, str1, screen, pos):
 text = self.font.render(str1, self.antialias, self.color,

self.background)
 screen.blit(text, pos)

"""
author: Faisal Z. Qureshi

email: faisal.qureshi@uoit.ca
website: http://www.vclab.ca
license: BSD
"""

import pygame, sys
import matplotlib.pyplot as plt
import numpy as np

import sim_rk4 as Simulation
import sim as Simulation
import util

def main():
 # sim title
 title = 'Mass-Spring System'

 # initializing pygame
 pygame.init()

 # clock object that ensure that animation has the same
 # on all machines, regardless of the actual machine speed.
 clock = pygame.time.Clock()

 # fonts
 text = util.MyText(util.BLACK)

 # setting up a sprite group, which will be drawn on the
 # screen
 ball = util.MyRect(color=util.BLUE, width=32, height=32)
 center = util.MyRect(color=util.RED, width=4, height=4)
 x_axis = util.MyRect(color=util.BLACK, width=620, height=1)
 y_axis = util.MyRect(color=util.BLACK, width=1, height=460)
 my_group = pygame.sprite.Group([x_axis, y_axis, ball, center])

 # set up drawing canvas
 # top left corner is (0,0) top right (640,0) bottom left (0,480)
 # and bottom right is (640,480).
 win_width = 640
 win_height = 480
 screen = pygame.display.set_mode((win_width, win_height))
 pygame.display.set_caption(title)

 # setting up simulation
 sim = Simulation.Simulation(title)
 # sim.init(state=np.array([200,200,0,0], dtype='float32'), mass=100.,

k=.01, l=200.) Try some other values
 sim.init(state=np.array([200,200,0,0], dtype='float32'), mass=10.,

k=10, l=200.)
 sim.set_time(0.0)
 sim.set_dt(0.1)

 print ('--------------------------------')
 print ('Usage:')
 print ('Press (r) to start/resume simulation')
 print ('Press (p) to pause simulation')
 print ('Press (q) to quit')
 print ('Press (space) to step forward simulation when paused')
 print ('Use mouse left button down to move mass around (only when

simulation paused)')
 print ('--------------------------------')

 # Transformation to screen coordinates
 # Here 0,0 refers to simulation coordinates
 center.set_pos(util.to_screen(0, 0, win_width, win_height))
 x_axis.set_pos(util.to_screen(0, 0, win_width, win_height))
 y_axis.set_pos(util.to_screen(0, 0, win_width, win_height))

 while True:
 # 30 fps
 clock.tick(30)

 # update sprite x, y position using values
 # returned from the simulation
 ball.set_pos(util.to_screen(sim.state[0], sim.state[1], win_width,

win_height))

 event = pygame.event.poll()
 if event.type == pygame.QUIT:
 pygame.quit()
 sys.exit(0)

 if event.type == pygame.KEYDOWN and event.key == pygame.K_p:
 sim.pause()
 continue
 elif event.type == pygame.KEYDOWN and event.key == pygame.K_r:
 if not ball.picked:
 sim.resume()
 continue
 elif event.type == pygame.KEYDOWN and event.key == pygame.K_q:
 break
 elif event.type == pygame.MOUSEBUTTONDOWN and event.button == 1: #

sim.py
Starter code for your simulation class.

LEFT=1
 if sim.paused:
 if ball.rect.collidepoint(event.pos):
 ball.picked = True
 elif event.type == pygame.MOUSEMOTION:
 if ball.picked:
 x, y = util.from_screen(event.pos[0], event.pos[1],

win_width, win_height)
 sim.set_state(np.array([x, y, 0, 0], dtype='float32'))
 elif event.type == pygame.MOUSEBUTTONUP and event.button == 1:
 if ball.picked:
 ball.picked = False
 sim.set_state(np.array([x, y, 0, 0], dtype='float32'))
 else:
 pass

 # clear the background, and draw the sprites
 screen.fill(util.WHITE)
 my_group.update()
 my_group.draw(screen)
 text.draw("Time = %f" % sim.cur_time, screen, (10,10))
 text.draw("x = %f" % sim.state[0], screen, (10,40))
 text.draw("y = %f" % sim.state[1], screen, (10,70))
 if ball.picked:
 text.draw("Picked. (Simulation disabled)", screen, (10,100))
 pygame.display.flip()

 # update simulation
 if not sim.paused:
 sim.step()
 elif not ball.picked and event.type == pygame.KEYDOWN and

event.key == pygame.K_SPACE:
 sim.step()
 else:
 pass

 pygame.quit()
 sys.exit(0)

if __name__ == '__main__':
 main()

"""
author: Faisal Qureshi
email: faisal.qureshi@uoit.ca
website: http://www.vclab.ca
license: BSD
"""

import numpy as np

class Simulation:
 def __init__(self, title):
 self.paused = True # starting in paused mode
 self.title = title
 self.cur_time = 0
 self.dt = 0.033 # 33 millisecond, which corresponds to 30 fps
 # Fix this

 def init(self, state, mass, k, l):
 # Fix this
 pass

 def set_state(self, state):
 # Fix this
 pass

 def set_time(self, cur_time=0):
 self.cur_time = cur_time

 def set_dt(self, dt=0.033):
 self.dt = dt

 def step(self):
 # Fix this
 pass

 def pause(self):
 self.paused = True

 def resume(self):
 self.paused = False

 def save(self, filename):
 # Ignore this
 pass

 def load(self, filename):

position velocity
Ray 0,0

Dx a knew

y Ynew
Are he Vnnew

try ry new

Code execution
We will run your code as follows:

Submission
Nothing to submit. Please show your work to the instructor. Due in class.

 # Ignore this
 pass

$ python mass-spring-2d.py

n

f
d

total mg FImg

I drag force that depends
uponthevelocityofthis
mass

C As the velocity increases Rd will also increase

I At some point Fdwill be equal to mg
Liii No force is acting on the object

Objectwill continue to fall at a constant velocity

Iv The velocity at which the drag force is equal to mg is
called

terminalvelority
s

keep this aspects in mind when simulating

phenomenon

Isolation
Fid Gr mg

Ii Quadratic

em Gr mg E

E
qEf Estimate velocity using

finite differences
Estimate acceleration

I_ _Figureout the relationship
between velocity

acceleration Is it

lniear or quadratic
Compute drag force

Run simulation

