

January 21, 2026

Continuous System Simulations

- "time" drives the simulation
- "time" is the continuous variable
- Differential equations
 - Ordinary Differential Equations (ODEs)

Three set of variables:

- state variables
- input variables \leftarrow function/operator
- output variables

ODE

$$F\left(t, x, \frac{dx}{dt}, \dots, \frac{d^{(n-1)}x}{dt^{(n-1)}}\right) = \frac{dx^n}{dt^n}$$

Annotations:

- time (independant variable)
- state variables
- derivatives of x

Notations:

$\frac{dx}{dt}$	derivative of x w.r.t. t
x'	
Dx	

Example:

$$\textcircled{1} \quad mx'' = F$$

$$\Rightarrow m \frac{d^2x}{dt^2} = F \quad \text{order} = 2$$

$$\textcircled{2} \quad x' + 32x'' + \underline{x'''} = 0 \quad \text{order} = 3$$

$$\textcircled{3} \quad x' + 34x = 32 \quad \text{order} = 1$$

Solving Differential Equations

E.g. $x'' = 2$

$$\Rightarrow \frac{d^2x}{dt^2} = 2$$

Solution is the value of $x = x(t)$ that satisfies this equation.

Key idea: integration.

x depends upon t .

(i) $x'' = 2$

(ii) Integrate once: $\underline{x'} = 2t + C_1$

(iii) Integrate twice: $x = t^2 + tC_1 + C_2$

↑ ↑
constants of integration

Q. How to solve for C_1 and C_2 ?

(i) initial conditions

(ii) boundary conditions

Initial Conditions: $x'(0) = 3$ $x(0) = 2$

$$\begin{aligned} 3 &= (2)(0) + C_1 & C_1 &= 3 \\ 2 &= (0)^2 + 0 + C_2 & C_2 &= 2 \end{aligned}$$

Solution: $x = t^2 + 3t + 2$

N^{th} order ODE Reducibility

$$x^{(n)} = F(t, x, x', \dots, x^{(n-1)})$$

We can re-write this n^{th} -order ODE as a system of first-order differential equations by defining a new family of unknown functions.

$$x^{(i-1)} = z_i$$

Example:

2nd order ODE: $x'' = -g$

$$\Rightarrow \frac{d^2x}{dt^2} = -g \quad \text{order} = 2 \quad \text{state variable: } x$$

This can be reduced to:

$$\frac{d}{dt} \left(\frac{dx}{dt} \right) = -g$$

$$\frac{dx}{dt} = v$$

order = 1

$$\frac{dv}{dt} = -g$$

order = 1

state variables:
 x, v

2

Takeaways:

- (i) All of our simulations only involve first order ODEs.
- (ii) Even if we have higher order equations: we apply reducibility to get a system of first order equations.
- (iv) Easier to solve numerically.
Very few numerical solvers exist for higher order ODEs.

Newton's Second Law of Motion

$$a \propto F \quad \text{and} \quad a \propto \frac{1}{m}$$

\uparrow \uparrow
 acceleration mass
 \uparrow
 force

$$F = ma$$

a : rate of change of velocity.

v : rate of change of position

\uparrow
velocity
 \downarrow
 x

$$v = \frac{dx}{dt}$$

$$a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$$

$F = ma$ is a second-order differential equation

$$\Rightarrow F = m \frac{d^2x}{dt^2}$$

$$\Rightarrow \frac{d^2x}{dt^2} = \frac{F}{m}$$

Reduce

$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = \frac{F}{m}$$

2 first order
equations

State variable

x

Solving DDEs numerically:

$$\frac{dx}{dt} = v \rightarrow \Delta x = v \Delta t$$

$$\frac{dv}{dt} = \frac{F}{m} \rightarrow \Delta v = \frac{F}{m} \Delta t$$

update rules ← require the current values of x and v .

Model: $v(t + \Delta t) = v(t) + \frac{F}{m} \Delta t$

\downarrow input
 \downarrow input / constant

 $x(t + \Delta t) = x(t) + v \Delta t$

State: x, v you need an update rule for each state variable.

$x(0) = ?$

$x(0), v(0)$ is given.

$v(0) = ?$

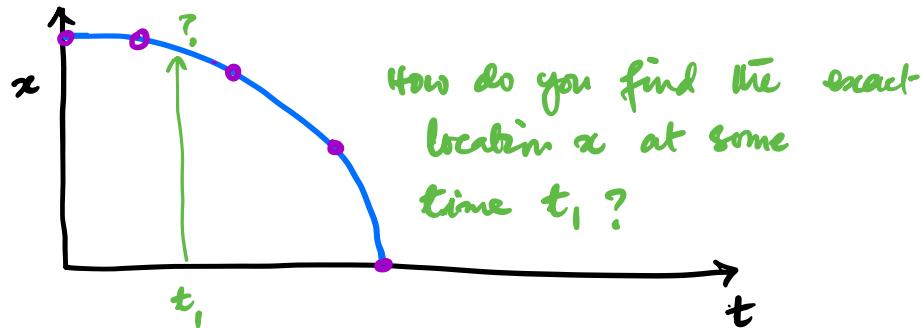
F, m are given.

Δt is also provided. E.g. $\Delta t = 1$

$$\underline{x(0), v(0)} \rightarrow \underline{x(1), v(1)} \rightarrow \underline{x(2), v(2)} \rightarrow \underline{x(3), v(3)}$$

Choice of Δt

- if Δt is too small, the simulation can become very slow
- if Δt is too large, the simulation can become very inaccurate.
- Advanced techniques can dynamically adjust Δt .



- Δt has a relationship to the length (timescale) of simulation

- molecular activity
- ecosystems
- galaxy formation
- At that is used to advance the simulation is much smaller than the Δt that is used to display results output variables.

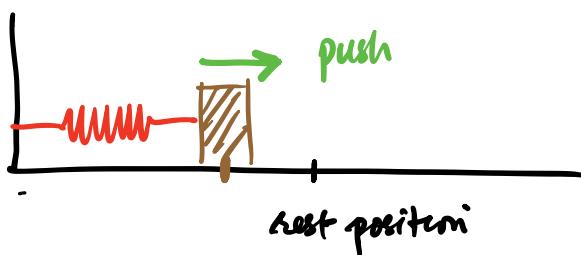
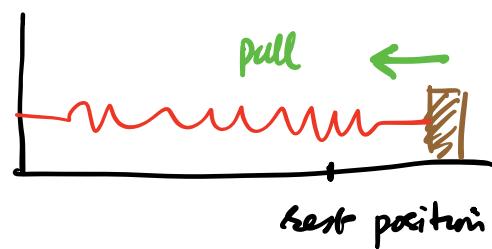
* Update rules are constructed from differential equations that model the dynamics of the system. Update rules are then used to see how state variables change over time.

Mass spring system

- Hooke's law: "the extension is proportional to force"

$$F = -kx$$

displacement
 from the
 rest position.
 spring constant



Modelling a mass-spring system

- How do I model the motion of mass that is attached to a spring?

$$F = ma$$

$$F = -kx$$

- Differential Equations (ODE) that captures dynamics

$$ma = -kx$$

$$\Rightarrow m \frac{d^2x}{dt^2} = -kx$$

$$\Rightarrow \frac{d^2x}{dt^2} = -\frac{k}{m}x \rightarrow \begin{cases} \frac{dx}{dt} = v \\ \frac{dv}{dt} = -\frac{k}{m}x \end{cases} \quad \left. \begin{array}{l} 2 \text{ 1st order} \\ \text{DDEs.} \end{array} \right\}$$

(b) Update rules.

$$\Delta x = v \Delta t \quad \text{--- (1)}$$

$$\Delta v = -\frac{k}{m}x \Delta t \quad \text{--- (2)}$$

$$(c) \quad x(t + \Delta t) = x(t) + v \Delta t$$

$$v(t + \Delta t) = v(t) - \frac{k}{m} \underline{x(t)} \Delta t$$

1. Δt
2. k
3. m

Euler Integration

* Mind your variables.

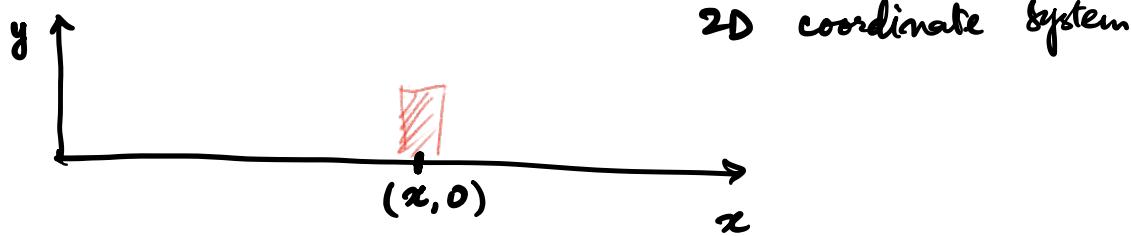
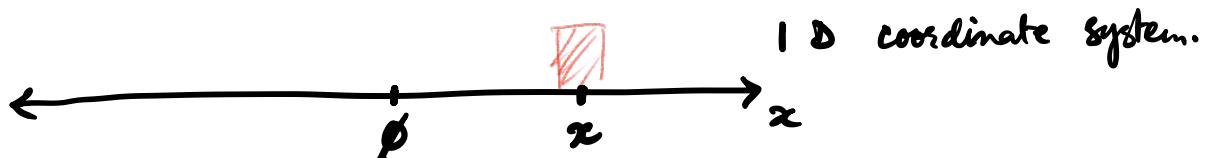
(i) $F = -kx$ $\rightarrow x$: displacement of the spring

(ii) $F = ma \rightarrow \frac{d^2x}{dt^2} = \frac{F}{m}$ $\rightarrow x$: position of mass

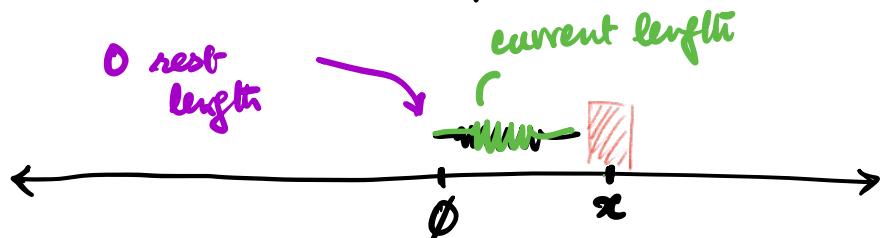
Displacement of the spring:

$$= |\text{rest length} - \text{current length}|$$

Position of the mass:

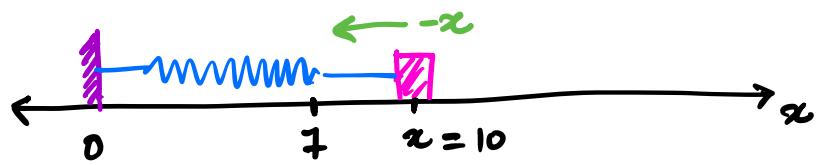


Q. Under what conditions would the update rules described above work.



Exercise :

(A)

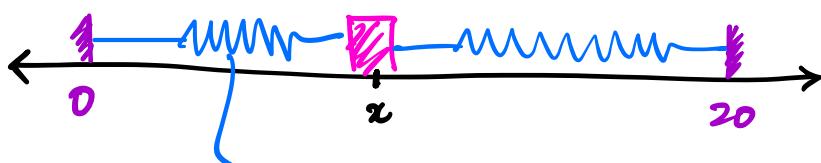


$$\text{rest length} = l_{\text{rest}} = 7$$

$$\text{Spring constant} = k = 0.3$$

compute the magnitude and the direction of the force that this spring exerts on the mass m.

(B)



$$l_{\text{rest}} = 5$$

$$l^2_{\text{rest}} = 12$$

$$x = 9$$

Mass Spring Damper

Mass experiences a damping force that is proportional to its velocity (friction).

$$\textcircled{1} \quad F = -kx - cv$$

Diagram labels:

- Spring constant: k
- Spring displacement: x
- Velocity: v
- Damping constant: c

We also have $F = ma$. $\textcircled{2}$

Putting $\textcircled{1}$ and $\textcircled{2}$ together

$$\begin{aligned} ma &= -kx - cv \\ \Rightarrow m \frac{d^2x}{dt^2} &= -kx - cv \end{aligned}$$

$$\text{(i)} \quad \frac{dx}{dt} = v$$

$$\text{(ii)} \quad m \frac{dv}{dt} = -kx - cv$$

1st order equation

Update rules:

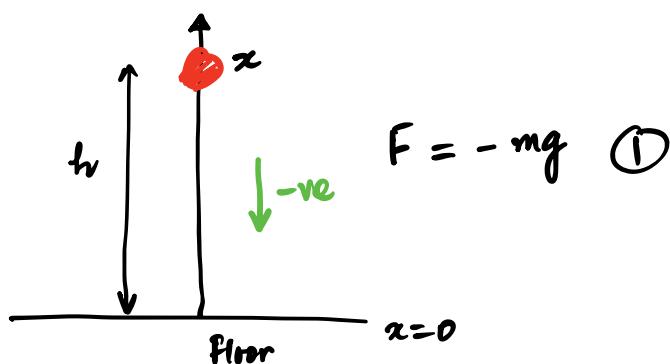
$$\Delta x = v \Delta t$$

$$\Delta v = -\frac{k}{m} x \Delta t - \frac{c}{m} v \Delta t$$

State variables:

$$x, v$$

Bouncing Ball



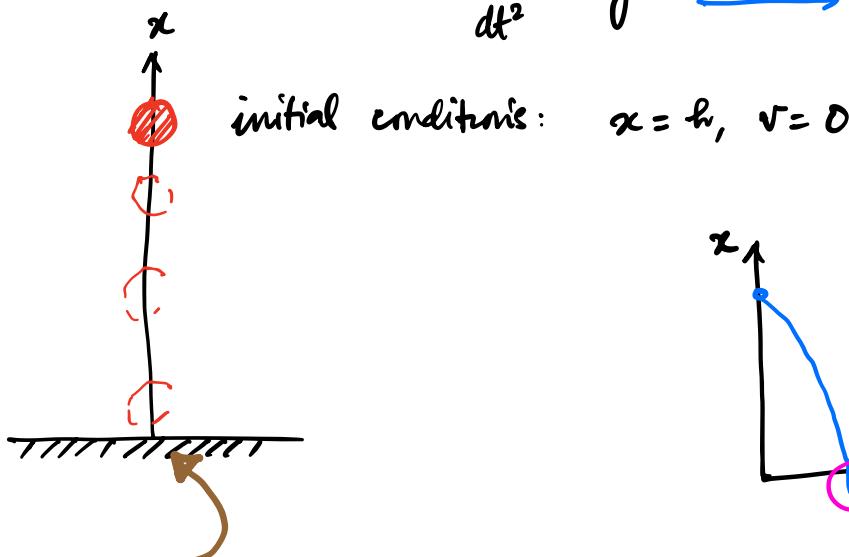
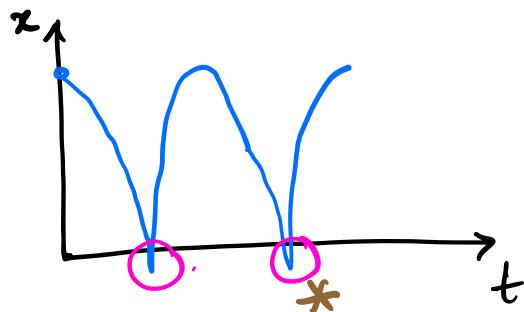
We also have: $F = ma$ ②

From ① and ② $mg = -mg$

$$\Rightarrow a = -g$$

$$\Rightarrow \frac{d^2x}{dt^2} = -g$$

$$\frac{dx}{dt} = v \quad \xrightarrow{\text{Model Dynamics.}}$$
$$\frac{dv}{dt} = -g$$



Collision detected $\because x < 0$

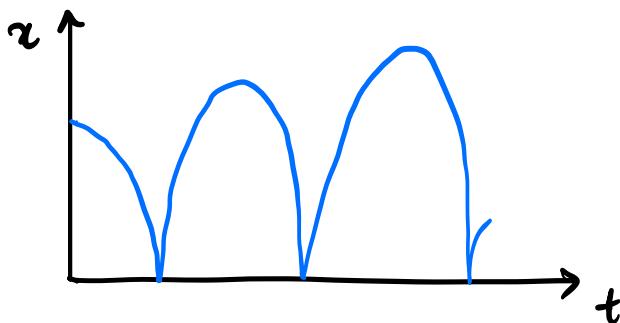
we are asked to compute a response.

Re-initialize the differential equations using the following initial conditions.

$$x = x, \quad v = -v$$

- * How about we re-initialize the differential equations as follows

$$x=0, v=-v$$

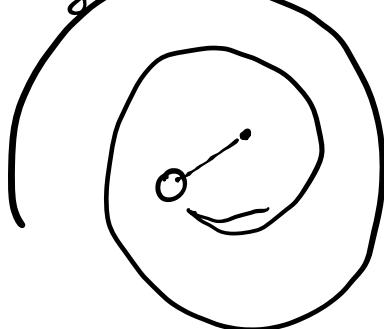


- * Collision detection and response needs care. Since these affect the overall accuracy of your simulation.
- * Exact collision times ?

$$\Delta t \rightarrow 0$$

Numerical Solver:

- (i) Euler integration is rather poor. The system gains energy.



spiralizing out of control.

- (ii) Runge - Kutta (RK4) method.

Much more numerically stable.

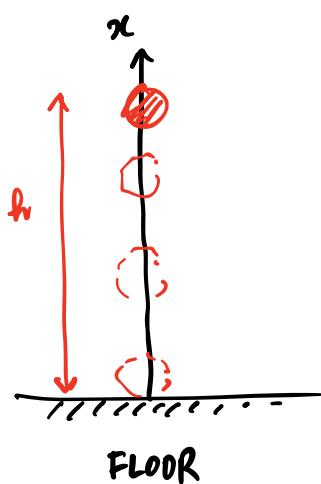
Error is proportional to Δt^4

Where as error for Euler integration is proportional to Δt .

Recall $\Delta t < 1$

Using laws of physics to your advantage

Law of Conservation of Energy.



$$x = h, v = 0$$

Reinitialize ODE as follows

$$x = 0, v = \underline{\underline{-v}} \rightarrow v = -\sqrt{2gh}$$

↓↓ This $|v|$ is much larger than the true v at floor height.

○ → collision is detected. we need a response!

Potential Energy: mgh

K.E. $\frac{1}{2}mv^2$

Total energy: $mgh + \frac{1}{2}mv^2$

Q. What is the K.E. at height h : Ø

$$\textcircled{1} - mgh + 0 = mgh$$

What is the P.E. at floor: Ø

$$\textcircled{2} - 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2$$

$$mgh = \frac{1}{2}mv^2$$

$$\Rightarrow v = \sqrt{2gh} *$$

Q. When will this approach fail?

A. Damping / friction.