

Quantum Computing II

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

- Qubits
 - A comparison with bits
 - Qubit implementations
 - Photons
 - Electrons
- Quantum circuits
 - Initialization
 - Transformations
 - Measurement

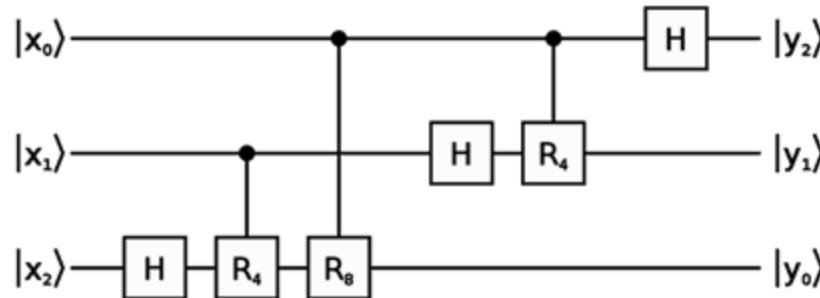
Qubits

CSCI 2050U - Computer Architecture

Qubits

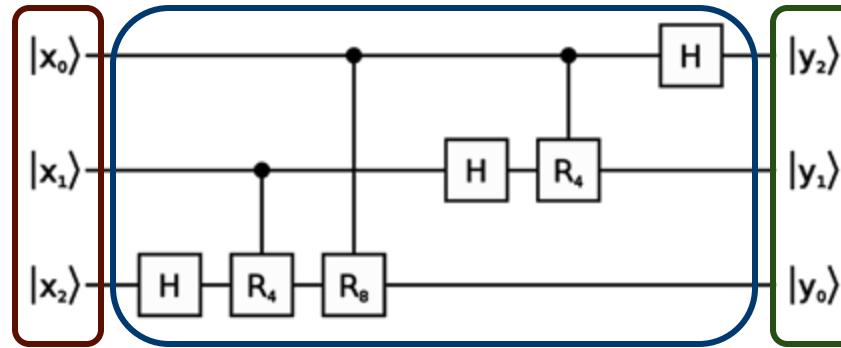
- A quantum bit (aka a qubit) is the most basic unit of data in a quantum computer
 - Like a bit, it can have the value zero (0) or one (1)
 - Unlike a bit, however, a qubit can be in a superposition
 - i.e. A given qubit can be *some* zero and *some* one
 - Examples:
 - 0 with 100% probability
 - 1 with 100% probability
 - 0 with 50% probability and 1 with 50% probability
 - 0 with 33% probability and 1 with 67% probability
 - etc.

Qubit Implementations


- Photons
 - As we've already seen, one physical concept that experiences quantum effects is a photon (w.r.t. polarization)
 - Photons can be measured with respect to some alignment, and the result will be horizontal vs. vertical (photons can be in a superposition of the two)
- Electrons
 - Electron "spin" is very similar, since an electron's spin can be in a superposition of "spin up" and "spin down"
 - More info on electron "spin": <https://www.youtube.com/watch?v=3k5IWIVdMbo>
 - This tends to be a bit more popular for actual quantum computer construction, since electrons tend to hang around longer

Quantum Circuits

CSCI 2050U - Computer Architecture


Quantum Circuits

- Quantum computing doesn't involve programs as we know them (at least not exclusively)
- To perform a quantum computation, we build a quantum circuit
 - Like a digital circuit, a quantum circuit is made up of various **inputs**, **gates**, and **outputs**

Quantum Circuits

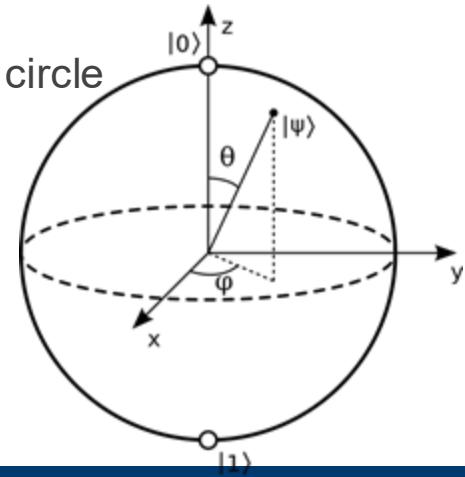
- Quantum computing doesn't involve programs as we know them (at least not exclusively)
- To perform a quantum computation, we build a quantum circuit
 - Like a digital circuit, a quantum circuit is made up of various **inputs**, **gates**, and **outputs**

Quantum Circuits

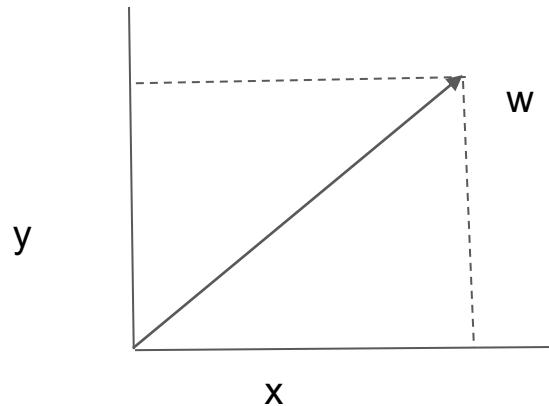
- Quantum circuits involve three phases:
 - Initializing the qubits
 - Performing various transformations on one or more qubits at a time
 - Measuring the qubit values

1. Initialization

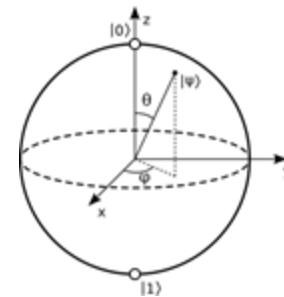
- We may want to initialize our qubits in one of several ways:
 - Initialize to zero (0) (notation $|0\rangle$)
 - Initialize to one (1) (notation $|1\rangle$)
 - Initialize to a superposition: 50% probability of zero (0), 50% probability of one (1)
 - etc.
- For option #3, there is a quantum gate called a Hadamard gate
 - This puts a single qubit into superposition, where it is equally probable for it to be measured as 0 and 1
- Initialization is irreversible



2. Transformations


- Much like in digital circuits, a number of gates are used to transform the qubits
 - X (Pauli-X gate, an inverter)
 - Z (Pauli-Z gate, another kind of inverter)
 - CNOT (conditional NOT)
- There are many more, but these few should be enough for us to build something interesting

2. Transformations


- Since a qubit can be partly 0 and partly 1 (when in superposition), we often use a circle to represent the state of a qubit
 - *Note: A sphere would be more appropriate (called a Bloch sphere), since the coefficients are actually complex numbers, not necessarily real numbers*
 - The state of a qubit is represented as a vector on this circle (sphere)
- Transformations are typically rotations of these vectors, around the circle (sphere)
 - Since rotations are reversible, so are these transformations

2. Transformations

$$w = a^* x + b^* y$$

2. Transformations (X)

- X gate
 - $|0\rangle$ is transformed to $|1\rangle$
 - $|1\rangle$ is transformed to $|0\rangle$
 - 30% $|0\rangle$ and 70% $|1\rangle$ is transformed to 70% $|0\rangle$ and 30% $|1\rangle$
- *Hint: Think of any quantum state as some amount of each possible binary state*
 - e.g. $\alpha|0\rangle + \beta|1\rangle$
 - i. $|0\rangle$ can be re-written as $1.0|0\rangle + 0.0|1\rangle$
 - ii. $|1\rangle$ can be re-written as $0.0|0\rangle + 1.0|1\rangle$
 - iii. 30% $|0\rangle$ and 70% $|1\rangle$ can be re-written as $\sqrt{0.3}|0\rangle + \sqrt{0.7}|1\rangle$

2. Transformations (Z)


- Z gate

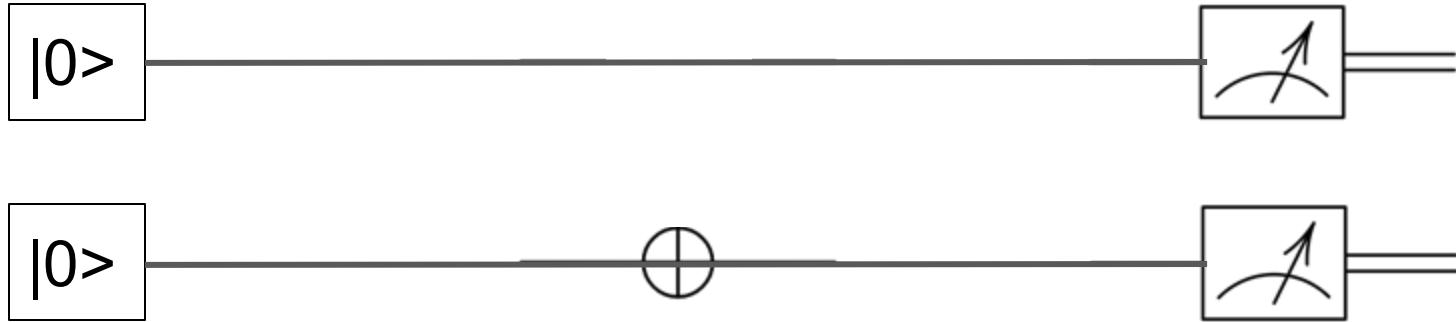
- Flips the sign of the 2nd co-efficient
- $|0\rangle$ (i.e. $1.0|0\rangle + 0.0|1\rangle$) is transformed to $|0\rangle$ (i.e. $1.0|0\rangle + -0.0|1\rangle$)
- $|1\rangle$ (i.e. $0.0|0\rangle + 1.0|1\rangle$) is transformed to $0.0|0\rangle + -1.0|1\rangle$
- $0.3|0\rangle + 0.7|1\rangle$ is transformed to $0.3|0\rangle + -0.7|1\rangle$

2. Transformations (CNOT)

- CNOT (conditional NOT) gate
 - Our first two-qubit quantum gate
 - First bit - control bit
 - Operation:
 - If the first bit is $|0\rangle$, the second bit is unchanged
 - If the first bit is $|1\rangle$, the second bit is inverted (like the X gate)
- Some quantum gates operate on three or more qubits (e.g. Toffoli)

3. Measurement

- Measurement must be done carefully, since:
 - The output of a measurement is binary (e.g. spin up vs. spin down)
 - Measurement actually changes the value
- With qubits in superposition, the only way to know the actual value is to repeat the computation many times
 - The result will be a set of probabilities
 - e.g. out of 1000 executions, 342 of them resulted in zero, and 658 of them resulted in one
- Measurement is irreversible

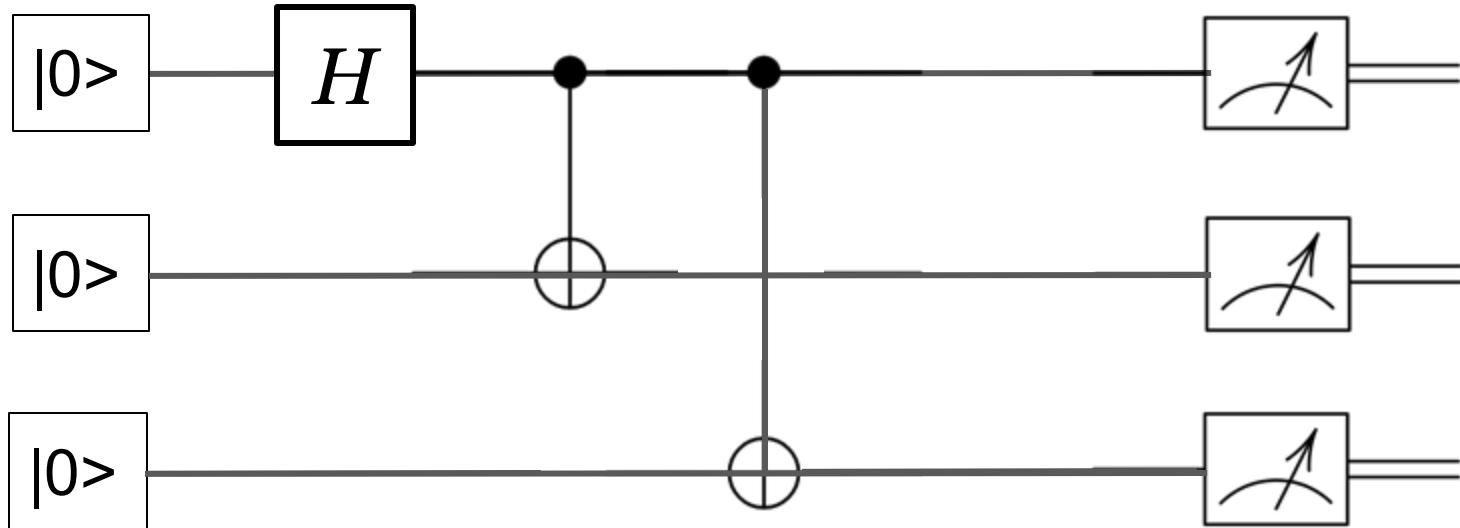


Details

- Quantum computing can be simulated in software using linear algebra
 - Quantum states are represented as vectors
 - Quantum gates are represented as matrices
- As this math isn't covered until 2nd year, we can only scratch the surface of what you can do with quantum computing
 - If you are interested in quantum computing, check out CSCI 4140U (Quantum Computing Software and Applications)
 - Quantum computing requires some math background, but surprisingly very little physics


Example - Inverter

- This circuit is very similar to classical circuits


Example - Bell Test

- Two qubit entanglement

Example - GHZ State

- Three qubit entanglement

Wrap-up

- Qubits
 - A comparison with bits
 - Qubit implementations
 - Photons
 - Electrons
- Quantum circuits
 - Initialization
 - Transformations
 - Measurement

What is next?

- This is the end of this lecture, but if you want to find out more you can read about it on IBM's Quantum Computing Field Guide:
 - <https://quantum-computing.ibm.com/composer/docs/iqx/guide>
- Want to try out some quantum circuits on your own?
 - <https://quantum-computing.ibm.com/composer>
 - You need an account, but it is free and you can even run your circuits on one of IBM's real (mostly 7 qubit) quantum computers