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● Imagine you work at a pizza place, making pizzas:
○ Toss the dough

○ Add sauce

○ Sprinkle cheese

○ Add toppings

○ Cook in oven

○ Slice

○ Box

● When not busy, you might:
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● What if it is busy?
○ The pizza takes a long time to cook in the oven, and you can’t really do anything useful 

(e.g. slice) that pizza until it has finished cooking

○ Parallelism - while the first pizza is in the oven, you can start the second pizza
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● What if it is busy?
○ The pizza takes a long time to cook in the oven, and you can’t really do anything useful 

(e.g. slice) that pizza until it has finished cooking

○ Parallelism - while the first pizza is in the oven, you can start the second pizza

● This is quite similar to executing instructions in a CPU
○ Fetch the instruction and operand values

○ Decode the instruction

○ Execute the instruction
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● Without pipelining
○ Fetch the opcode and operand values for the first instruction
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● Pipelining in action
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● But...
○ Pipelining breaks down on branch/jump instructions

○ Pipelining may break down if a subsequent instruction requires the values from a 

previous instruction
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● Branch prediction
○ The CPU guesses which path the program will take, and pre-executes the instructions 

along that execution path

■ e.g. If a branch has been true for the past 10 iterations of the loop, let’s assume it 

will be true again this time

○ If it guesses wrong, it may need to undo everything it has done since the branch

■ This may be worth it if the predictions are accurate enough
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● Multi-core CPUs have become the standard for most devices
○ These are CPUs with multiple physical processing units

■ Multiple ALUs, multiple control units, multiple register sets

○ GPUs are similar, except they have far more numerous, but simpler, cores

● These multi-core systems will be examined further in a future course 

(CSCI 4060U - Massively Parallel Programming)

Multi-core CPUs and GPUs



● As we’ve seen, adjacent instructions are often dependent
○ Instruction A modifies a value used by instruction B

○ It may not be possible for pipelining to pre-execute instruction B, since the values it 

needs are not yet ready

● Hyper-threading solves this problem by introducing k logical cores
○ Each physical core may be mapped to k logical cores (e.g. 2)

○ A logical core looks like a core to the operating system

○ The CPU may interleave instructions from separate processes/threads in the same 

core, since they are more likely to be independent

Hyper-threading



Process 1, Logical core 1 Process 2, Logical core 2

Physical core
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Hyper-threading
Process 1, Logical core 1 Process 2, Logical core 2

Physical core



Wrap-Up
● Optimizations

○ Pipelining

○ Hyperthreading



What is next?
● Experiments with light

● Basic principles of quantum mechanics
○ Observer effect

○ Indeterminacy

○ Superposition

○ Entanglement

● Myths about quantum mechanics and quantum computing
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