Optimizations

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

e Optimizations
o Pipelining
o Hyperthreading

) OntarioTech

UNIVERSITY

Optimizations

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Pipelining
e Imagine you work at a pizza place, making pizzas:
o Toss the dough

o Addsauce

o Sprinkle cheese

o Add toppings

o Cook in oven toss dough___add sauce _Sprinkle cheese
o Slice @

o Box

e \When not busy, you might: add toppings

put in box slice cook in oven

1 OntarioTech

UNIVERSITY

Pipelining

e Whatifitis busy?

e Whatifitis busy?
o The pizza takes a long time to cook in the oven, and you can’t really do anything useful

(e.g. slice) that pizza until it has finished cooking
o Parallelism - while the first pizza is in the oven, you can start the second pizza

1 OntarioTech

UNIVERSITY

e Whatifitis busy?
o The pizza takes a long time to cook in the oven, and you can’t really do anything useful

(e.g. slice) that pizza until it has finished cooking
o Parallelism - while the first pizza is in the oven, you can start the second pizza

e This is quite similar to executing instructions in a CPU

o Fetch the instruction and operand values
o Decode the instruction
o Execute the instruction

1 OntarioTech

UNIVERSITY

Pipelining
e Without pipelining

o Fetch the opcode and operand values for the first instruction

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Without pipelining

o Fetch the opcode and operand values for the first instruction
o Decode the first instruction

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

e Without pipelining
o Fetch the opcode and operand values for the first instruction

o Decode the first instruction
o Execute the first instruction

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

e Without pipelining
Fetch the opcode and operand values for the first instruction
Decode the first instruction

Execute the first instruction
Fetch the opcode and operand values for the second instruction

0O O O O

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Without pipelining
Fetch the opcode and operand values for the first instruction
Decode the first instruction
Execute the first instruction

Fetch the opcode and operand values for the second instruction
etc.

0O O O O O

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Without pipelining
Fetch the opcode and operand values for the first instruction
Decode the first instruction
Execute the first instruction

Fetch the opcode and operand values for the second instruction
etc.

0O O O O O

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Without pipelining
Fetch the opcode and operand values for the first instruction
Decode the first instruction
Execute the first instruction

Fetch the opcode and operand values for the second instruction
etc.

0O O O O O

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Without pipelining
Fetch the opcode and operand values for the first instruction
Decode the first instruction
Execute the first instruction

Fetch the opcode and operand values for the second instruction
etc.

0O O O O O

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Without pipelining
Fetch the opcode and operand values for the first instruction
Decode the first instruction
Execute the first instruction

Fetch the opcode and operand values for the second instruction
etc.

0O O O O O

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

e Pipelining in action
o Fetch the opcode and operand values for the first instruction

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Pipelining in action

o Fetch the opcode and operand values for the first instruction
o Decode the first instruction, and fetch the second

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

e Pipelining in action
o Fetch the opcode and operand values for the first instruction

o Decode the first instruction, and fetch the second
o Execute the first, decode the second, and fetch the third

Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Pipelining in action
o Fetch the opcode and operand values for the first instruction
o Decode the first instruction, and fetch the second
o Execute the first, decode the second, and fetch the third
O

etc.
Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Pipelining in action
o Fetch the opcode and operand values for the first instruction
o Decode the first instruction, and fetch the second
o Execute the first, decode the second, and fetch the third
O

etc.
Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Pipelining in action
o Fetch the opcode and operand values for the first instruction
o Decode the first instruction, and fetch the second
o Execute the first, decode the second, and fetch the third
O

etc.
Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Pipelining in action
o Fetch the opcode and operand values for the first instruction
o Decode the first instruction, and fetch the second
o Execute the first, decode the second, and fetch the third
O

etc.
Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining
e Pipelining in action
o Fetch the opcode and operand values for the first instruction
o Decode the first instruction, and fetch the second
o Execute the first, decode the second, and fetch the third
O

etc.
Fetch Decode Execute

1 OntarioTech

UNIVERSITY

Pipelining

o Pipelining breaks down on branch/jump instructions
o Pipelining may break down if a subsequent instruction requires the values from a
previous instruction

1 OntarioTech

UNIVERSITY

Pipelining
e Branch prediction
o The CPU guesses which path the program will take, and pre-executes the instructions
along that execution path
m e.g.If abranch has been true for the past 10 iterations of the loop, let’s assume it
will be true again this time

o If it guesses wrong, it may need to undo everything it has done since the branch
m This may be worth it if the predictions are accurate enough

1 OntarioTech

UNIVERSITY

Multi-core CPUs and GPUs

e Multi-core CPUs have become the standard for most devices
o These are CPUs with multiple physical processing units
m Multiple ALUs, multiple control units, multiple register sets
o GPUs are similar, except they have far more numerous, but simpler, cores

e These multi-core systems will be examined further in a future course
(CSCI 4060U - Massively Parallel Programming)

1 OntarioTech

UNIVERSITY

Hyper-threading

e As we've seen, adjacent instructions are often dependent
o Instruction A modifies a value used by instruction B
o It may not be possible for pipelining to pre-execute instruction B, since the values it
needs are not yet ready

e Hyper-threading solves this problem by introducing k logical cores
o Each physical core may be mapped to k logical cores (e.g. 2)
o Alogical core looks like a core to the operating system
o The CPU may interleave instructions from separate processes/threads in the same
core, since they are more likely to be independent

1 OntarioTech

UNIVERSITY

Hyper-threading

Process 1, Logical core 1

1 OntarioTech

UNIVERSITY

Physical core

Process 2, Logical core 2

Hyper-threading

Process 1, Logical core 1

1 OntarioTech

UNIVERSITY

Physical core

Process 2, Logical core 2

Hyper-threading

Process 1, Logical core 1

1 OntarioTech

UNIVERSITY

Physical core

Process 2, Logical core 2

Hyper-threading

Process 1, Logical core 1

1 OntarioTech

UNIVERSITY

Physical core

Process 2, Logical core 2

Hyper-threading

Process 1, Logical core 1 Process 2, Logical core 2

Physical core

1 OntarioTech

UNIVERSITY

Hyper-threading

Process 1, Logical core 1 Process 2, Logical core 2

Physical core

1 OntarioTech

UNIVERSITY

Hyper-threading

Process 1, Logical core 1 Process 2, Logical core 2

Physical core

1 OntarioTech

UNIVERSITY

Wrap-Up

e Optimizations
o Pipelining
o Hyperthreading

) OntarioTech

UNIVERSITY

What is next?

e Experiments with light

e Basic principles of quantum mechanics
o Observer effect
o Indeterminacy
o Superposition
o Entanglement
e Myths about quantum mechanics and quantum computing

1 OntarioTec!

UNIVERSITY

	Slide 1: Optimizations
	Slide 2: Outline
	Slide 3: Optimizations
	Slide 4: Pipelining
	Slide 5: Pipelining
	Slide 6: Pipelining
	Slide 7: Pipelining
	Slide 8: Pipelining
	Slide 9: Pipelining
	Slide 10: Pipelining
	Slide 11: Pipelining
	Slide 12: Pipelining
	Slide 13: Pipelining
	Slide 14: Pipelining
	Slide 15: Pipelining
	Slide 16: Pipelining
	Slide 17: Pipelining
	Slide 18: Pipelining
	Slide 19: Pipelining
	Slide 20: Pipelining
	Slide 21: Pipelining
	Slide 22: Pipelining
	Slide 23: Pipelining
	Slide 24: Pipelining
	Slide 25: Pipelining
	Slide 26: Pipelining
	Slide 27: Multi-core CPUs and GPUs
	Slide 28: Hyper-threading
	Slide 29: Hyper-threading
	Slide 30: Hyper-threading
	Slide 31: Hyper-threading
	Slide 32: Hyper-threading
	Slide 33: Hyper-threading
	Slide 34: Hyper-threading
	Slide 35: Hyper-threading
	Slide 36: Wrap-Up
	Slide 37: What is next?

