
Optimizations

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier



Outline
● Optimizations

○ Pipelining

○ Hyperthreading



Optimizations

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier



● Imagine you work at a pizza place, making pizzas:
○ Toss the dough

○ Add sauce

○ Sprinkle cheese

○ Add toppings

○ Cook in oven

○ Slice

○ Box

● When not busy, you might:

Pipelining



● What if it is busy?

Pipelining



● What if it is busy?
○ The pizza takes a long time to cook in the oven, and you can’t really do anything useful 

(e.g. slice) that pizza until it has finished cooking

○ Parallelism - while the first pizza is in the oven, you can start the second pizza

Pipelining



● What if it is busy?
○ The pizza takes a long time to cook in the oven, and you can’t really do anything useful 

(e.g. slice) that pizza until it has finished cooking

○ Parallelism - while the first pizza is in the oven, you can start the second pizza

● This is quite similar to executing instructions in a CPU
○ Fetch the instruction and operand values

○ Decode the instruction

○ Execute the instruction

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

Fetch Decode Execute

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction

Fetch Decode Execute

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction

○ Execute the first instruction

Fetch Decode Execute

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction

○ Execute the first instruction

○ Fetch the opcode and operand values for the second instruction

Fetch Decode Execute

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction

○ Execute the first instruction

○ Fetch the opcode and operand values for the second instruction

○ etc.

Fetch Decode Execute

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction

○ Execute the first instruction

○ Fetch the opcode and operand values for the second instruction

○ etc.

Fetch Decode Execute

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction

○ Execute the first instruction

○ Fetch the opcode and operand values for the second instruction

○ etc.

Fetch Decode Execute

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction

○ Execute the first instruction

○ Fetch the opcode and operand values for the second instruction

○ etc.

Fetch Decode Execute

Pipelining



● Without pipelining
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction

○ Execute the first instruction

○ Fetch the opcode and operand values for the second instruction

○ etc.

Fetch Decode Execute

Pipelining



● Pipelining in action
○ Fetch the opcode and operand values for the first instruction

Fetch Decode Execute

Pipelining



● Pipelining in action
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction, and fetch the second

Fetch Decode Execute

Pipelining



● Pipelining in action
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction, and fetch the second

○ Execute the first, decode the second, and fetch the third

Fetch Decode Execute

Pipelining



● Pipelining in action
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction, and fetch the second

○ Execute the first, decode the second, and fetch the third

○ etc.

Fetch Decode Execute

Pipelining



● Pipelining in action
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction, and fetch the second

○ Execute the first, decode the second, and fetch the third

○ etc.

Fetch Decode Execute

Pipelining



● Pipelining in action
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction, and fetch the second

○ Execute the first, decode the second, and fetch the third

○ etc.

Fetch Decode Execute

Pipelining



● Pipelining in action
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction, and fetch the second

○ Execute the first, decode the second, and fetch the third

○ etc.

Fetch Decode Execute

Pipelining



● Pipelining in action
○ Fetch the opcode and operand values for the first instruction

○ Decode the first instruction, and fetch the second

○ Execute the first, decode the second, and fetch the third

○ etc.

Fetch Decode Execute

Pipelining



● But...
○ Pipelining breaks down on branch/jump instructions

○ Pipelining may break down if a subsequent instruction requires the values from a 

previous instruction

Pipelining



● Branch prediction
○ The CPU guesses which path the program will take, and pre-executes the instructions 

along that execution path

■ e.g. If a branch has been true for the past 10 iterations of the loop, let’s assume it 

will be true again this time

○ If it guesses wrong, it may need to undo everything it has done since the branch

■ This may be worth it if the predictions are accurate enough

Pipelining



● Multi-core CPUs have become the standard for most devices
○ These are CPUs with multiple physical processing units

■ Multiple ALUs, multiple control units, multiple register sets

○ GPUs are similar, except they have far more numerous, but simpler, cores

● These multi-core systems will be examined further in a future course 

(CSCI 4060U - Massively Parallel Programming)

Multi-core CPUs and GPUs



● As we’ve seen, adjacent instructions are often dependent
○ Instruction A modifies a value used by instruction B

○ It may not be possible for pipelining to pre-execute instruction B, since the values it 

needs are not yet ready

● Hyper-threading solves this problem by introducing k logical cores
○ Each physical core may be mapped to k logical cores (e.g. 2)

○ A logical core looks like a core to the operating system

○ The CPU may interleave instructions from separate processes/threads in the same 

core, since they are more likely to be independent

Hyper-threading



Process 1, Logical core 1 Process 2, Logical core 2

Physical core

Hyper-threading



Process 1, Logical core 1 Process 2, Logical core 2

Physical core

Hyper-threading



Process 1, Logical core 1 Process 2, Logical core 2

Physical core

Hyper-threading



Process 1, Logical core 1 Process 2, Logical core 2

Physical core

Hyper-threading



Process 1, Logical core 1 Process 2, Logical core 2

Physical core

Hyper-threading



Process 1, Logical core 1 Process 2, Logical core 2

Physical core

Hyper-threading



Hyper-threading
Process 1, Logical core 1 Process 2, Logical core 2

Physical core



Wrap-Up
● Optimizations

○ Pipelining

○ Hyperthreading



What is next?
● Experiments with light

● Basic principles of quantum mechanics
○ Observer effect

○ Indeterminacy

○ Superposition

○ Entanglement

● Myths about quantum mechanics and quantum computing


	Slide 1: Optimizations
	Slide 2: Outline
	Slide 3: Optimizations
	Slide 4: Pipelining
	Slide 5: Pipelining
	Slide 6: Pipelining
	Slide 7: Pipelining
	Slide 8: Pipelining
	Slide 9: Pipelining
	Slide 10: Pipelining
	Slide 11: Pipelining
	Slide 12: Pipelining
	Slide 13: Pipelining
	Slide 14: Pipelining
	Slide 15: Pipelining
	Slide 16: Pipelining
	Slide 17: Pipelining
	Slide 18: Pipelining
	Slide 19: Pipelining
	Slide 20: Pipelining
	Slide 21: Pipelining
	Slide 22: Pipelining
	Slide 23: Pipelining
	Slide 24: Pipelining
	Slide 25: Pipelining
	Slide 26: Pipelining
	Slide 27: Multi-core CPUs and GPUs
	Slide 28: Hyper-threading
	Slide 29: Hyper-threading
	Slide 30: Hyper-threading
	Slide 31: Hyper-threading
	Slide 32: Hyper-threading
	Slide 33: Hyper-threading
	Slide 34: Hyper-threading
	Slide 35: Hyper-threading
	Slide 36: Wrap-Up
	Slide 37: What is next?

