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Outline

e Creating functions
o Function definitions
o Passing arguments
o Returning values
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Defining Functions
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Stack Instructions

e These instructions are the most basic way to use the stack
€ push rax — puts the value of rax onto the top of the stack
m rspis decreased by the size of rax (8)
m rsp points to the top of the stack
€ pop rax — pops the top of the stack into rax
m rspisincreased by the size of rax (8)

Note: The stack in x64 (and x86) grows downward
i.e. the stack grows toward lower addresses, not higher addresses
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The Calling Stack

e Every program has a dedicated program stack
e Each time a function is called:
o Some arguments may be passed via registers
o Other arguments may be pushed onto the stack
m These arguments are pushed in reverse order
o The return address (rip) is saved onto the stack

o The stack base pointer (rbp) is saved onto the stack
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Passing Arguments via Registers

o System V AMDG64 ABI (application binary interface):

o A calling convention used by Linux, MacOS, BSD
o For integer or pointer arguments:
m rdi - firstinteger/pointer argument
rsi - second integer/pointer argument
rdx - third integer/pointer argument
rcx - fourth integer/pointer argument
r8 - fifth integer/pointer argument
r9 - sixth integer/pointer argument

o All remaining arguments are passed via the stack

https://web.archive.org/web/20160801075139/http://www.x86-64.0org/documentation/abi.pdf
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Passing Arguments via the Stack

e System V AMDG4 ABI:

o Recall that rsp points to the top of the stack
o When calling a function
m [rsp] contains the return address
m [rsp+8] contains the first stack parameter

https://web.archive.org/web/20160801075139/http://www.x86-64.0org/documentation/abi.pdf
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The Calling Stack

long funcl (long a, long b, long ¢, long d,
long e, long f, long g, long h) {
long xx, Vy, 2zZ;

L] L] L]
} high address
RDI a
REBP + 24 h RSl b
REP + 16 [} RDX: c
REP saved RBP  [all—— REBP RE &
growth

REP -8 o R& 1

RBP - 16

RBP - 24

<

“red zone”

low address 128 kyles

httne-//lalithonrcaonnlarae nat/2N011/NQ/NR/ctarl_frama_lavalif-nn_-vQA_ARA



The Calling Stack
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Returning from a Function

+ A function returns using the ret instruction

+ ret pops rbp and rip off the stack, and resumes execution at
rip + (instruction size)
« If there are still local variables on the stack, these should be

popped off
+ If you do not, your program will almost certainly crash

. If there are still arguments on the stack, you can't pop them off
+ The rbp and rip values are in the way

1 OntarioTech

UNIVERSITY



Cleaning up the Stack

+ A function returns using the ret instruction

. If there are still arguments on the stack, you can't pop them off
+ The rbp and rip values are in the way

« Thereis a version of ret that takes an integer operand
+ The number of bytes to pop off the stack after popping rbp, rip
+ €.g. ret 8 (pop 1 64-bit value off the stack)
« Alternatively, the caller of the function could pop the values off
the stack after the function returns
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Wrap Up

e Creating functions
o Function definitions
o Passing arguments
o Returning values
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What is next?

e Optimizations
o Pipelining
o Hyperthreading
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