Assembly Language Programming V
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

e Creating functions
o Function definitions
o Passing arguments
o Returning values

1 OntarioTech

UNIVERSITY

Defining Functions

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Stack Instructions

e These instructions are the most basic way to use the stack
€ push rax — puts the value of rax onto the top of the stack
m rspis decreased by the size of rax (8)
m rsp points to the top of the stack
€ pop rax — pops the top of the stack into rax
m rspisincreased by the size of rax (8)

Note: The stack in x64 (and x86) grows downward
i.e. the stack grows toward lower addresses, not higher addresses

1 OntarioTech

UNIVERSITY

The Calling Stack

e Every program has a dedicated program stack
e Each time a function is called:
o Some arguments may be passed via registers
o Other arguments may be pushed onto the stack
m These arguments are pushed in reverse order
o The return address (rip) is saved onto the stack

o The stack base pointer (rbp) is saved onto the stack

1 OntarioTech

UNIVERSITY

Passing Arguments via Registers

o System V AMDG64 ABI (application binary interface):

o A calling convention used by Linux, MacOS, BSD
o For integer or pointer arguments:
m rdi - firstinteger/pointer argument
rsi - second integer/pointer argument
rdx - third integer/pointer argument
rcx - fourth integer/pointer argument
r8 - fifth integer/pointer argument
r9 - sixth integer/pointer argument

o All remaining arguments are passed via the stack

https://web.archive.org/web/20160801075139/http://www.x86-64.0org/documentation/abi.pdf

1 OntarioTech

UNIVERSITY

https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf

Passing Arguments via the Stack

e System V AMDG4 ABI:

o Recall that rsp points to the top of the stack
o When calling a function
m [rsp] contains the return address
m [rsp+8] contains the first stack parameter

https://web.archive.org/web/20160801075139/http://www.x86-64.0org/documentation/abi.pdf

1 OntarioTech

UNIVERSITY

https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf

The Calling Stack

long funcl (long a, long b, long ¢, long d,
long e, long f, long g, long h) {
long xx, Vy, 2zZ;

L] L] L]
} high address
RDI a
REBP + 24 h RSl b
REP + 16 [} RDX: c
REP saved RBP [all—— REBP RE &
growth

REP -8 o R& 1

RBP - 16

RBP - 24

<

“red zone”

low address 128 kyles

httne-//lalithonrcaonnlarae nat/2N011/NQ/NR/ctarl_frama_lavalif-nn_-vQA_ARA

The Calling Stack

stack
growth

high address

REF + 24
REP + 16
REP +8
REP
REP -8
REP - 16
REP - 24

g
retum address
saved RBP -——— REP
xx
¥y
—— RSP

“red Zome”
low address 128 byles

httne-//lalithonrcaonnlarae nat/2N011/NQ/NR/ctarl_frama_lavalif-nn_-vQA_ARA

R3I:

RDx:
RCX:

R
Ro;

o

Returning from a Function

+ A function returns using the ret instruction

+ ret pops rbp and rip off the stack, and resumes execution at
rip + (instruction size)
« If there are still local variables on the stack, these should be

popped off
+ If you do not, your program will almost certainly crash

. If there are still arguments on the stack, you can't pop them off
+ The rbp and rip values are in the way

1 OntarioTech

UNIVERSITY

Cleaning up the Stack

+ A function returns using the ret instruction

. If there are still arguments on the stack, you can't pop them off
+ The rbp and rip values are in the way

« Thereis a version of ret that takes an integer operand
+ The number of bytes to pop off the stack after popping rbp, rip
+ €.g. ret 8 (pop 1 64-bit value off the stack)
« Alternatively, the caller of the function could pop the values off
the stack after the function returns

.)
OntarioTech
UNIVERSITY

Wrap Up

e Creating functions
o Function definitions
o Passing arguments
o Returning values

1 OntarioTech

UNIVERSITY

What is next?

e Optimizations
o Pipelining
o Hyperthreading

1 OntarioTech

UNIVERSITY

	Slide 1: Assembly Language Programming V x86-64 Architecture
	Slide 2
	Slide 3: Defining Functions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: What is next?

