
Assembly Language Programming V
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

● Creating functions

○ Function definitions

○ Passing arguments

○ Returning values

Defining Functions

CSCI 2050U - Computer Architecture

● These instructions are the most basic way to use the stack
◆ push rax – puts the value of rax onto the top of the stack

■ rsp is decreased by the size of rax (8)

■ rsp points to the top of the stack

◆ pop rax – pops the top of the stack into rax

■ rsp is increased by the size of rax (8)

●

● Note: The stack in x64 (and x86) grows downward

◆ i.e. the stack grows toward lower addresses, not higher addresses

Stack Instructions

● Every program has a dedicated program stack

● Each time a function is called:

○ Some arguments may be passed via registers

○ Other arguments may be pushed onto the stack

■ These arguments are pushed in reverse order

○ The return address (rip) is saved onto the stack

○ The stack base pointer (rbp) is saved onto the stack

The Calling Stack

● System V AMD64 ABI (application binary interface):
○ A calling convention used by Linux, MacOS, BSD

○ For integer or pointer arguments:
■ rdi - first integer/pointer argument

■ rsi - second integer/pointer argument

■ rdx - third integer/pointer argument

■ rcx - fourth integer/pointer argument
■ r8 - fifth integer/pointer argument

■ r9 - sixth integer/pointer argument

○ All remaining arguments are passed via the stack

https://web.archive.org/web/20160801075139/http://www.x86-64.org/documentation/abi.pdf

Passing Arguments via Registers

https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf

● System V AMD64 ABI:
○ Recall that rsp points to the top of the stack

○ When calling a function
■ [rsp] contains the return address

■ [rsp+8] contains the first stack parameter

https://web.archive.org/web/20160801075139/http://www.x86-64.org/documentation/abi.pdf

Passing Arguments via the Stack

https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf

long func1(long a, long b, long c, long d,

long e, long f, long g, long h) {

long xx, yy, zz;

...

}

stack

growth

The Calling Stack

https://e li.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64

stack

growth

The Calling Stack

https://e li.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64

Returning from a Function

◆ A function returns using the ret instruction
◆ ret pops rbp and rip off the stack, and resumes execution at

rip + (instruction_size)

◆ If there are still local variables on the stack, these should be

popped off
◆ If you do not, your program will almost certainly crash

◆ If there are still arguments on the stack, you can't pop them off
◆ The rbp and rip values are in the way

−

Cleaning up the Stack

◆ A function returns using the ret instruction
◆ If there are still arguments on the stack, you can't pop them off

◆ The rbp and rip values are in the way

◆ There is a version of ret that takes an integer operand
◆ The number of bytes to pop off the stack after popping rbp, rip

◆ e.g. ret 8 (pop 1 64-bit value off the stack)

◆ Alternatively, the caller of the function could pop the values off

the stack after the function returns

Wrap Up

● Creating functions

○ Function definitions

○ Passing arguments

○ Returning values

What is next?
● Optimizations

○ Pipelining

○ Hyperthreading

	Slide 1: Assembly Language Programming V x86-64 Architecture
	Slide 2
	Slide 3: Defining Functions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: What is next?

