
Assembly Language Programming IV
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier



● Comparisons

● Unconditional jumps

● Conditional jumps

● Implementing conditionals

● Implementing loops

Outline



Branching and Jumping

CSCI 2050U - Computer Architecture



● Branching (also called jumping) is when program flow does not simply flow 

to the next instruction

● A branch instruction may modify the RIP register

● Unconditional jumping

○ Always set the RIP register to the specified address

○ Basically, a GOTO statement

● Conditional jumping

○ Jump only when some condition is true

○ e.g. the value of some flag

Branching/Jumping



● The cmp instruction is similar to a subtract, except that it doesn't modify its 

operands

● Only the flags are modified

Comparisons



Flag Meaning

Z (Zero) Set when the result of an arithmetic operation is 

zero

O (Overflow) Set when an arithmetic operation resulted in 

overflow

S (Sign) Set when an arithmetic operation resulted in a 

negative result

C (Carry) Set when an arithmetic operation resulted in carry

Flags



◆ These instructions jump when certain flags are set (or are not set)

○ Often by a cmp instruction

Intuition Unsigned Signed

== je je

!= jne jne

< jb jl

≤ jbe jle

> ja jg

≥ jae jge

Conditional Jump Instructions



◆ These instructions jump when certain flags are set in other ways:

Instruction Flags

jz Z=1

jnz Z=0

jc C=1

jnc C=0

jo O=1

jno O=0

js S=1

jns S=0

Conditional Jump Instructions



Conditional Jump Instructions

◆ These instructions jump depending on the value of the rcx, (ecx, …) register

◆ This register is often used as a loop counter

Instruction Flags

jcxz RCX==0

jcxnz RCX!=0



Implementing Conditionals

◆ Conditional jumps make it easy to implement if/elseif/else statements

C++ Assembly

int num = …;

if (num < 10) {

// do something

}

// the rest of the code

mov rax, [num]

cmp rax, 10

jge skipCond

; do something

skipCond:

; the rest of the code



Implementing Loops
◆ Conditional jumps also make it easy to implement while, do/while, and for 

loops

C++ Assembly

int num = …;

while (num < 10) {

// do something

num++;

}

// the rest of the code

mov rax, [num]

loopStart:

cmp rax, 10

jge loopExit

; do something

inc rax

jmp loopStart

loopExit:

; the rest of the code



Wrap-Up

● Comparisons

● Unconditional jumps

● Conditional jumps

● Implementing conditionals

● Implementing loops



What is Next?

● Creating functions

○ Function definitions

○ Passing arguments

○ Returning values


	Slide 1: Assembly Language Programming IV x86-64 Architecture
	Slide 2
	Slide 3: Branching and Jumping
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

