
Assembly Language Programming III
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier



● Moving data between registers and memory

● Arithmetic operations

○ Addition

○ Subtraction

○ Multiplication

○ Division

○ Shift

○ Rotation

Outline



Basic and Arithmetic Instructions

CSCI 2050U - Computer Architecture



• Each corresponds to a single instruction actually executed by the CPU

• Examples

mov rax, [number]

– copies a quadword from memory to the register RAX (also called the 

accumulator)

add rax, 24

– adds the quadword representation of 24 to the number already in RAX, 

replacing the number in RAX

sub rax, 24

– subtracts the quadword representation of 24 from the number already in 

RAX, replacing the number in RAX

Basic Instructions



• Instruction’s object code begins with the opcode, usually one byte

– Example, A1 for mov rax, [number]

• Immediate operands are constants embedded in the object code

– Example, 0000009E for add rax, 158

• Addresses are assembly-time; must be fixed when program is linked and 

loaded

– Example, 00000004 for mov sum, rax

Parts of an Instruction



• Immediate mode (e.g. mov rax, anyLabel)

– Constant assembled into the instruction

• Register mode (e.g. mov rax, rbx)

– A code for a register is assembled into the instruction

• Memory references (e.g. mov rax, [number])

– Several different modes 

Operand Types



• Direct – at a memory location whose address is built into the instruction

– Usually recognized by a data segment label

– e.g., mov [sum], rax

● (here rax is a register operand)

• Register indirect – at a memory location whose address is in a register

– Usually recognized by a register name in brackets, 

– e.g., mov qword [rbx], 10

● (here 10 is an immediate operand)

Memory References



• [rbp] - base register only

• [rbx + rdi * 4] - base + index * scale

• [rbp + rax] - scale is 1 (bytes)

• [rax - 8] – offset by -8

• [rax + rdi * 8 + 4] - all four components

• [rax + offset] - uses the address of the variable 'offset' as the offset

• ...more...

Memory References - Examples



● Multiplication is different for unsigned (MUL) and signed (IMUL) numbers

● e.g. mul rcx     ; multiply RAX * RCX (RCX - 2nd operand)

● Of course, the operand can be memory or a register, as well

● The second operand is explicit (rcx in this case)

● The first operand is implicit:

Size 1st operand Result

byte AL AX

word AX DX:AX

dword EAX EDX:EAX

qword RAX RDX:RAX

Multiplication - MUL and IMUL



● An example:

mov rdx, 0

mov rax, 12

mov rcx, 4

mul rcx

; rdx should be zero

; rax should be 48

Multiplication - MUL and IMUL



● Division is different for unsigned (DIV) and signed (IDIV) numbers

● e.g. div rcx ; divide RDX:RAX / RCX (RCX - 2nd operand)

● Of course, the operand can be memory or a register, as well

● The second operand is explicit (rcx in this case)

● The first operand is implicit:

Size 1st operand Quotient Remainder

byte AX AL AH

word DX:AX AX DX

dword EDX:EAX EAX EDX

qword RDX:RAX RAX RDX

Division - DIV and IDIV



● An example:

mov rdx, 0

mov rax, 12

mov rcx, 4

div rcx

; rdx should be zero (since 12 % 4 == 0)

; rax should be 3 (since 12 / 4 == 3)

Division - DIV and IDIV



● Move all bits left (or right) 3 positions:

● shl rax, 3 (or shr rax, 3)

● Move all bits left (or right) 3 positions (sign is preserved) (arithmetic shift):

● sal rax, 3 (or sar rax, 3)

● sal is functionally identical to shl

● There are also rotations

● Instead of dropping the bit on the left (or right), it is wrapped around

● rol rax, 3 (or ror rax, 3)

Shifting and Rotating



Wrap-Up

● Moving data between registers and memory

● Arithmetic operations

○ Addition

○ Subtraction

○ Multiplication

○ Division

○ Shift

○ Rotation



What is Next?

● Comparisons

● Unconditional jumps

● Conditional jumps

● Implementing conditionals

● Implementing loops


	Slide 1: Assembly Language Programming III x86-64 Architecture
	Slide 2
	Slide 3: Basic and Arithmetic Instructions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

