Assembly Language Programming IlI
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY



Outline

e Moving data between registers and memory
e Arithmetic operations
o Addition
Subtraction
Multiplication
Division
Shift
Rotation

O
O
O
O
O

1 OntarioTech

UNIVERSITY




Basic and Arithmetic Instructions

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY



Basic Instructions

« Each corresponds to a single instruction actually executed by the CPU
 Examples

mov rax, [number]
— copies a quadword from memory to the register RAX (also called the
accumulator)

add rax, 24
— adds the quadword representation of 24 to the number already in RAX,
replacing the number in RAX

sub rax, 24
— subtracts the quadword representation of 24 from the number already in
RAX, replacing the number in RAX



Parts of an Instruction

 Instruction’s object code begins with the opcode, usually one byte
— Example, A1 for mov rax, [number]
* Immediate operands are constants embedded in the object code
— Example, 0000009E for add rax, 158
» Addresses are assembly-time; must be fixed when program is linked and
loaded

— Example, 00000004 for mov sum, rax

1 OntarioTech

UNIVERSITY



Operand Types

* Immediate mode (e.g. mov rax, anyLabel)

— Constant assembled into the instruction
* Register mode (e.g. mov rax, rbx)

— A code for a register is assembled into the instruction
 Memory references (e.g. mov rax, [number])

— Several different modes

1 OntarioTech

UNIVERSITY



Memory References

* Direct — at a memory location whose address is built into the instruction
— Usually recognized by a data segment label
— €e.g., mov [sum], rax
(here rax is a register operand)
* Register indirect — at a memory location whose address is in a register
— Usually recognized by a register name in brackets,
— e.g.,mov gword [rbx], 10

(here 10 is an immediate operand)

1 OntarioTech

UNIVERSITY



Memory References - Examples

 [rbp] - base register only

* [rbx + rdi * 4] -base +index * scale

* [rbp + rax] -scaleis 1 (bytes)

* [rax - 8] — offset by -8

* [rax + rdi * 8 + 4] -all four components

* [rax + offset] - uses the address of the variable 'offset' as the offset

e ...more...

1 OntarioTech

UNIVERSITY



Multiplication - MUL and IMUL

e Multiplication is different for unsigned (MUL) and signed (IMUL) numbers
e e.g. mul rcx ; multiply RAX * RCX (RCX - 2" operand)
e Of course, the operand can be memory or a register, as well
e The second operand is explicit (rcx in this case)

e The first operand is implicit:

Size 1st operand Result
byte AL AX

word AX DX:AX
dword EAX EDX:EAX

qword RAX RDX:RAX

1 OntarioTec

UNIVERSITY




Multiplication - MUL and IMUL

e An example:

mov rdx, O

mov rax, 12

mov rcx, 4

mul rcx

; rdx should be zero
; rax should be 48

1 OntarioTech

UNIVERSITY




Division - DIV and IDIV

e Division is different for unsigned (DIV) and signed (IDIV) numbers
e 6.g.div rcx ; divide RDX:RAX / RCX (RCX - 2" operand)
e Of course, the operand can be memory or a register, as well
e The second operand is explicit (rcx in this case)

e The first operand is implicit:

Size 1st operand Quotient Remainder
byte AX AL AH

word DX:AX AX DX

dword EDX:EAX EAX EDX

gword RDX:RAX RAX

. 71 E




Division - DIV and IDIV

e An example:

mov rdx, O

mov rax, 12

mov rcx, 4

div rcx

; rdx should be zero (since 12 % 4 == 0)
; rax should be 3 (since 12 / 4 == 3)

1 OntarioTech

UNIVERSITY




Shifting and Rotating

e Move all bits left (or right) 3 positions:
e shl rax, 3 (orshr rax, 3)
e Move all bits left (or right) 3 positions (sign is preserved) (arithmetic shift):
e sal rax, 3 (orsar rax, 3)
e sal is functionally identical to sh1l
e There are also rotations
e Instead of dropping the bit on the left (or right), it is wrapped around

e rol rax, 3(orror rax, 3)

1 OntarioTech

UNIVERSITY



Wrap-Up

e Moving data between registers and memory
e Arithmetic operations
o Addition
Subtraction
Multiplication
Division
Shift
Rotation

O
O
O
O
O

1 OntarioTech

UNIVERSITY




What is Next?

Comparisons
Unconditional jumps
Conditional jumps
Implementing conditionals
Implementing loops

1 OntarioTech

UNIVERSITY




	Slide 1: Assembly Language Programming III x86-64 Architecture
	Slide 2
	Slide 3: Basic and Arithmetic Instructions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

