
Assembly Language Programming II
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

● System V ABI calling convention

● Basic input and output

○ Using the c library (aka libc)

System V ABI Calling Convention

CSCI 2050U - Computer Architecture

Passing Arguments via Registers

● System V AMD64 ABI (application binary interface):
○ A calling convention used by Linux, MacOS, BSD

○ For integer or pointer arguments:
■ rdi - first integer/pointer argument

■ rsi - second integer/pointer argument

■ rdx - third integer/pointer argument

■ rcx - fourth integer/pointer argument
■ r8 - fifth integer/pointer argument

■ r9 - sixth integer/pointer argument

○ All remaining arguments are passed via the stack

https://web.archive.org/web/20160801075139/http://www.x86-64.org/documentation/abi.pdf

https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf

Passing Arguments via the Stack

● System V AMD64 ABI:
○ Recall that rsp points to the top of the stack

○ When calling a function
■ [rsp] contains the return address

■ [rsp+8] contains the first stack parameter

https://web.archive.org/web/20160801075139/http://www.x86-64.org/documentation/abi.pdf

https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf

Return Values

◆ System V AMD64 ABI:
◆ Integers are returned in rax or rdx:rax, and floating point

values are returned in xmm0 or xmm1:xmm0

Stack Alignment

◆ System V AMD64 ABI mandates that, during function calls, the stack

address must be a multiple of 16
◆ This is called stack alignment

◆ Many other operating systems have the same rule

◆ This means that we may often have to put padding data onto the stack when

we call a function to ensure that this is true

■ We'll see this in our examples, today

Basic Input and Output

CSCI 2050U - Computer Architecture

Basic Input and Output

● Every operating system has a set of system calls (aka syscalls) that

perform input and output

○ These are different from operating system to operating system

● In order to make code that will be easier to move to another operating

system, we'll use a higher-level library called libc

○ Lib C is so named because it is literally the standard library for the C language

○ It is simple enough to learn to use, yet higher level enough to abstract away the

operating system-specific details

Basic Output - printf

● In C, the most basic way to print a string output is using printf

○ printf is short for print formatted

● The first argument to printf is a format string which contains a number of typed

placeholders

○ Each remaining argument corresponds to one of these placeholders (normally, in the same

order that they are in the string)

● Some common types:

○ %d - decimal (i.e. integer)

○ %f - floating point

○ %s - string

Basic Output - printf

● Print a single integer (in C):

int age = 19;

printf("%d", age);

Basic Output - printf

● Print a single integer (in x86-64 assembly):

section .text

mov rdi, resultFormat

mov rsi, [age]

mov rax, 0

push rbx ; must align the stack to a multiple of 16 bytes

call printf ; call adds 8 bytes/64 bits to the stack

pop rbx ; remove this unnecessary stuff off of the stack

section .data

age dq 19

resultFormat db "%d", 0

Basic Output - printf

● Print two integer numbers, separated by a comma, ending with a newline (in C):

int x = 3;

int y = 2;

printf("%d,%d\n", x, y);

Basic Output - printf

● Print two integer numbers, separated by a comma, ending with a newline (in x86-64

assembly):

section .text

mov rdi, format

mov rsi, [x] ; note the [], which means the value at this address (x is an address)

mov rdx, [y]

mov rax, 0

push rbx

call printf

pop rbx

section .data

x dq 3

y dq 2

format db "%d,%d", 0ah, 0dh, 0

Basic Input - scanf

● In C, the most basic way to read input is using scanf

○ scanf is short for scan formatted

● The first argument to scanf is a format string which contains a number of typed

placeholders

○ Each remaining argument corresponds to one of these placeholders (normally, in the same

order that they are in the string), an address where to put the value

● The types are the same ones used by printf

Basic Input - scanf

● Read a single integer (in C):

int age = 0;

scanf("%d", &age);

Basic Input - scanf

● Read a single integer (in x86-64 assembly):

section .text

mov rdi, format

mov rsi, age ; note the lack of [], since we want the address

mov rax, 0

push rbx

call scanf

pop rbx

section .data

age dq 0 ; initial value

format db "%d", 0

Basic Input - scanf

● Read two integer numbers (in C):

int x;

int y;

scanf("%d%d", &x, &y);

Basic Input - scanf

● Read two integer numbers (in x86-64 assembly):

section .text

mov rdi, format

mov rsi, x

mov rdx, y

mov rax, 0

push rbx

call scanf

pop rbx

section .data

x dq 0

y dq 0

format db "%d%d", 0

● System V ABI calling convention

● Basic input and output

○ Using the c library (aka libc)

Wrap Up

What is next?

● Moving data between registers and memory

● Arithmetic operations

○ Addition

○ Subtraction

○ Multiplication

○ Division

○ Shift

○ Rotation

	Slide 1: Assembly Language Programming II x86-64 Architecture
	Slide 2
	Slide 3: System V ABI Calling Convention
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Basic Input and Output
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

