Assembly Language Programming Il
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

e System V ABI calling convention
e Basic input and output
o Using the c library (aka libc)

1 OntarioTech

UNIVERSITY

System V ABI Calling Convention

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Passing Arguments via Registers

o System V AMDG64 ABI (application binary interface):

o A calling convention used by Linux, MacOS, BSD
o For integer or pointer arguments:
m rdi - firstinteger/pointer argument
rsi - second integer/pointer argument
rdx - third integer/pointer argument
rcx - fourth integer/pointer argument
r8 - fifth integer/pointer argument
r9 - sixth integer/pointer argument

o All remaining arguments are passed via the stack

https://web.archive.org/web/20160801075139/http://www.x86-64.0org/documentation/abi.pdf

1 OntarioTech

UNIVERSITY

https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf

Passing Arguments via the Stack

e System V AMDG4 ABI:

o Recall that rsp points to the top of the stack
o When calling a function
m [rsp] contains the return address
m [rsp+8] contains the first stack parameter

https://web.archive.org/web/20160801075139/http://www.x86-64.0org/documentation/abi.pdf

1 OntarioTech

UNIVERSITY

https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf
https://web.archive.org/web/20160801075139/http:/www.x86-64.org/documentation/abi.pdf

Return Values
¢ System V AMDG64 ABI:

+ Integers are returned in rax or rdx: rax, and floating point
values are returned in xmmO or xmm1 : xmmO

1 OntarioTech

UNIVERSITY

Stack Alignment

¢ System V AMDG64 ABI mandates that, during function calls, the stack

address must be a multiple of 16
€ Thisis called stack alignment
¢ Many other operating systems have the same rule
& This means that we may often have to put padding data onto the stack when
we call a function to ensure that this is true
m We'll see this in our examples, today

1 OntarioTech

UNIVERSITY

Basic Input and Output

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Basic Input and Output

e Every operating system has a set of system calls (aka syscalls) that
perform input and output
o These are different from operating system to operating system
e In order to make code that will be easier to move to another operating
system, we'll use a higher-level library called libc

o Lib C is so named because it is literally the standard library for the C language
o Itis simple enough to learn to use, yet higher level enough to abstract away the

operating system-specific details

1 OntarioTech

UNIVERSITY

Basic Output - printf

e In C, the most basic way to print a string output is using printf
o printf is short for print formatted
e The firstargumentto printf is a format string which contains a number of typed
placeholders
o Each remaining argument corresponds to one of these placeholders (normally, in the same
order that they are in the string)
e Some common types:
o %d -decimal (i.e. integer)
o %f -floating point
o %s - string

1 OntarioTech

UNIVERSITY

Basic Output - printf

e Print a single integer (in C):

int age = 19;
printf ("%d", age);

1 OntarioTech

UNIVERSITY

Basic Output - printf

e Print a single integer (in x86-64 assembly):

section .text
mov rdi, resultFormat
mov rsi, [age]
mov rax, 0

push rbx ; must align the stack to a multiple of 16 bytes
call printf ; call adds 8 bytes/64 bits to the stack
pop rbx ; remove this unnecessary stuff off of the stack

section .data
age dg 19
resultFormat db "%d", O

1 OntarioTech

UNIVERSITY

Basic Output - printf

e Print two integer numbers, separated by a comma, ending with a newline (in C):

int x = 3;
int y = 2;
printf ("%d, $d\n", x, V)

1 OntarioTech

UNIVERSITY

Basic Output - printf

e Print two integer numbers, separated by a comma, ending with a newline (in x86-64
assembly):

section .text
mov rdi, format
mov rsi, [x] ; note the [], which means the value at this address (x is an address)
mov rdx, [v]
mov rax, 0
push rbx
call printf
pop rbx
section .data
x dg 3
y dg 2
format db "%d, %d", 0Oah, 0dh, O

1 OntarioTech

UNIVERSITY

Basic Input - scanf

e In C, the most basic way to read input is using scanf
o scanf is short for scan formatted
e The first argument to scanf is a format string which contains a number of typed
placeholders
o Each remaining argument corresponds to one of these placeholders (normally, in the same
order that they are in the string), an address where to put the value

e The types are the same ones used by printf

1 OntarioTech

UNIVERSITY

Basic Input - scanf

e Read a single integer (in C):

int age = 0;
scanft ("sd", &age);

1 OntarioTech

UNIVERSITY

Basic Input - scanf

e Read a single integer (in x86-64 assembly):

section .text
mov rdi, format
mov rsi, age ; note the lack of [], since we want the address
mov rax, 0
push rbx
call scanf
pop rbx

section .data
age dg 0 ; initial wvalue
format db "%d", O

1 OntarioTech

UNIVERSITY

Basic Input - scanf

e Read two integer numbers (in C):

int x;
int vy,
scanf ("%d%sd", &x, &y);

1 OntarioTech

UNIVERSITY

Basic Input - scanf

e Read two integer numbers (in x86-64 assembly):

section .text
mov rdi, format
mov rsi, x
mov rdx, y
mov rax, 0
push rbx
call scant
pop rbx
section .data
x dg O

y dq 0
format db "%d%d", 0

1 OntarioTech

UNIVERSITY

Wrap Up

e System V ABI calling convention
e Basic input and output
o Using the c library (aka libc)

1 OntarioTech

UNIVERSITY

What is next?

e Moving data between registers and memory
e Arithmetic operations
o Addition
Subtraction
Multiplication
Division
Shift
Rotation

O
O
O
O
O

1 OntarioTech

UNIVERSITY

	Slide 1: Assembly Language Programming II x86-64 Architecture
	Slide 2
	Slide 3: System V ABI Calling Convention
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Basic Input and Output
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

