
Assembly Language Programming I
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

● Assembly language programming

○ Development tools

○ Registers

○ Variables - the data section

○ A basic program

Development Tools

CSCI 2050U - Computer Architecture

Language Translators

● Interpreters translate each high-level language source code line every time

it is needed for execution

○ e.g. JVM, Python

● Compilers translate HLL source code to object code that is almost ready

for the CPU to execute

○ e.g. C++

● Assemblers translate assembly language – a low level language – to

object code

○ Two popular assemblers for Linux: nasm and yasm

Linker

• Object code files produced by a compiler or assembler are not quite ready

for execution

• A linker combines object code files and prepares them to be loaded into

memory for execution

• Two popular linkers for Linux: ld and gcc's linker

Debugger

• Allows the programmer to control execution of a program

– Step through instructions one at a time

– Stop at a preset breakpoint

• Lets you look at memory or register contents

– Helps find programming errors

– Helps understand how the computer works

Integrated Development Environments

• Single interface provides access to text editor, compiler or assembler,

linker, and debugger

• IDEs for developing assembly language:

− Microsoft Visual Studio

− Code::Blocks

− Eclipse

− SASM

Registers

CSCI 2050U - Computer Architecture

RAX

General Purpose Registers

RAX, RBX, RCX, RDX, each 64 bits long (quadword)

EAX
AX

AH AL

RBX EBX
BX

BH BL

… for RCX and RDX …

RCX ECX
CX

CH CL

RDX EDX
DX

DH DL

R8

• These registers are new to x64 (64-bit)

R8D R8W A R8B

R9 R9D R9W W R9B

R10 R10DR10W W R10B

R11 R11DR11W W R11B

R12 R12DR12W W R12B

R13 R13DR13W W R13B

R14 R14DR14W W R14B

R15 R15DR15W W R15B

General Purpose Registers

• RSI - source index

– Source address in string moves

– Array index

– General purposes

• RDI - destination index

– Destination address in string moves

– Array index

– General purposes

Index Registers

• RSP - stack pointer

– Holds address of top of stack frame

• RBP - base pointer

– Used in procedure calls to hold address of reference point in the stack

(i.e. bottom of stack frame)

Stack Registers

• RIP - instruction pointer

– Holds address of next instruction to be fetched for execution

• EFLAGS - flags

– Collection of flags, or status bits

– Records information about many operations

• Carry Flag (CF) is bit 0

• Zero Flag (ZF) is bit 6

• Sign Flag (SF) is bit 7

• Overflow Flag (OF) is bit 11

Other Registers

Variables

CSCI 2050U - Computer Architecture

• Variables are often declared in their own sections of the program

− .data – initialized data

− .bss – uninitialized data

− .rodata – read only (initialized) data

• Variables can also be:

− Stored on the calling stack (i.e. local variables)

− Allocated on the heap (e.g. with malloc())

Variables

• Assembly language does not have types per se

− e.g. If you want a number to be signed, you need to initialize it

properly, and use instructions intended for signed numbers

• It does support sizes, however

− db – byte (8-bit)

− dw – word (16-bit)

− dd – double word (32-bit)

− dq – quad word (64-bit)

− do – octo word (128-bit)

Data Sizes (Types)

• Registers usually act like local variables

– You tend to re-use the same registers for more calculations or operations later,

however

• The data section is where you define your global variables

section .data

promptFormat db "%s", 0

prompt db "Enter a number: ", 0

inputFormat db "%d", 0

number dq 0 ; int number = 0;

resultFormat db "The result is %d.", 0ah, 0dh, 0

The data Section

• Each declaration consists of a name, a type/size, and a value

• Define a single string (an array of bytes) containing 'hello':

greeting db "hello", 0

• Define a single (quadword) integer containing zero:

count dq 0

• Define an array of 10 (quadword) integers containing one through ten:

list dq 1,2,3,4,5,6,7,8,9,10

The data Section

• Each declaration consists of a name, a type/size, but no value

• Define an uninitialized string (an array of bytes):

firstName resb 50

• Define a single (quadword) uninitialized integer:

age resq 1

• Define an uninitialized array of 10 (quadword) integers:

grades resq 10

The bss Section

A Basic Program

CSCI 2050U - Computer Architecture

A Basic Assembly Program
section .data

message db "This is a message from Linux assembly!", 0ah, 0dh

section .text

global _start

; more system calls are provided in:

;http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64

_start:

mov rax, 1 ; syscall number for sys_write()

mov rdi, 1 ; standard output

mov rsi, message ; what to print

mov rdx, 40 ; how many characters to print

syscall

; exit

mov rax, 60 ; syscall number for sys_exit()

mov rdi, 0 ; exit code (0 means success)

syscall

comments

directives

comments

instructions

Directives

• Provide instructions to the assembler

• Typically don’t cause code to be generated

• Examples

– .section text - tells the assembler the where the instructions are to

be found

– .section data - tells the assembler the where the data is to be found

– db - tells the assembler to reserve space for an 8-bit byte/character

value

Wrap-Up

● Assembly language programming

○ Development tools

○ Registers

○ Variables - the data section

○ A basic program

What is Next?

● System V ABI calling convention

● Basic input and output

○ Using the c library (aka libc)

	Slide 1: Assembly Language Programming I x86-64 Architecture
	Slide 2
	Slide 3: Development Tools
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Registers
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15: Variables
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: A Basic Program
	Slide 22
	Slide 23
	Slide 24
	Slide 25

