Assembly Language Programming |
x86-64 Architecture

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

e Assembly language programming
o Development tools
o Registers
o Variables - the data section
o A basic program

1 OntarioTech

UNIVERSITY

Development Tools

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Language Translators

e Interpreters translate each high-level language source code line every time
it is needed for execution
o e.g. JVM, Python
e Compilers translate HLL source code to object code that is almost ready
for the CPU to execute
o e.g. C++
e Assemblers translate assembly language — a low level language — to
object code
o Two popular assemblers for Linux: nasm and yasm

1 OntarioTech

UNIVERSITY

Linker

» Object code files produced by a compiler or assembler are not quite ready
for execution

» A linker combines object code files and prepares them to be loaded into
memory for execution

« Two popular linkers for Linux: 1d and gcc's linker

1 OntarioTech

UNIVERSITY

Debugger

» Allows the programmer to control execution of a program
— Step through instructions one at a time
— Stop at a preset breakpoint
« Lets you look at memory or register contents
— Helps find programming errors
— Helps understand how the computer works

1 OntarioTech

UNIVERSITY

Integrated Development Environments

« Single interface provides access to text editor, compiler or assembler,
linker, and debugger
» |IDEs for developing assembly language:
— Microsoft Visual Studio
— Code::Blocks
— Eclipse
- SASM

1 OntarioTech

UNIVERSITY

Registers

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

General Purpose Registers

RAX, RBX, RCX, RDX, each 64 bits long (quadword)

RAX

General Purpose Registers

* These registers are new to x64 (64-bit)
RS8 RE R8B

R9 RS R9B

;8 R10W[R10B
8| R11W[R11B |
;8 R12W[R12B
;8 R13W[RI3B
;i R14W[R14B
;8 R15W[RI5B

Index Registers

 RSI - source index
— Source address in string moves
— Array index

— General purposes

* RDI - destination index
— Destination address in string moves
— Array index

— General purposes

Stack Registers

* RSP - stack pointer

— Holds address of top of stack frame

* RBP - base pointer
— Used in procedure calls to hold address of reference point in the stack

(i.e. bottom of stack frame)

1 OntarioTech

UNIVERSITY

Other Registers

 RIP - instruction pointer
— Holds address of next instruction to be fetched for execution

 EFLAGS - flags
— Collection of flags, or status bits
— Records information about many operations
« Carry Flag (CF)isbit0
« Zero Flag (ZF) is bit 6
« Sign Flag (SF) is bit 7
« Overflow Flag (OF) is bit 11

1 OntarioTech

UNIVERSITY

Variables

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Variables

» Variables are often declared in their own sections of the program
.data — initialized data
.bss — uninitialized data
.rodata — read only (initialized) data
« Variables can also be:
Stored on the calling stack (i.e. local variables)

Allocated on the heap (e.g. with malloc())

Data Sizes (Types)

« Assembly language does not have types per se
e.g. If you want a number to be signed, you need to initialize it
properly, and use instructions intended for signed numbers
» It does support sizes, however
db — byte (8-bit)
dw — word (16-bit)
dd — double word (32-bit)
dg — quad word (64-bit)
do — octo word (128-bit)

The data Section

* Registers usually act like local variables
— You tend to re-use the same registers for more calculations or operations later,
however
* The data section is where you define your global variables

section .data
promptFormat db "%$s", O
prompt db "Enter a number: ", 0

inputFormat db "%$d", O

number dg 0 ; 1nt number = 0;

resultFormat db "The result is %d.", 0ah, 0dh, O

1 OntarioTech

UNIVERSITY

The data Section

« Each declaration consists of a name, a type/size, and a value
* Define a single string (an array of bytes) containing 'hello":

greeting db "hello", O

* Define a single (quadword) integer containing zero:

count dg O

* Define an array of 10 (gquadword) integers containing one through ten:

list dq 1,2,3,4,5,6,7,8,9,10

1 OntarioTech

UNIVERSITY

The bss Section

» Each declaration consists of a name, a type/size, but no value
* Define an uninitialized string (an array of bytes):

firstName resb 50

* Define a single (quadword) uninitialized integer:

age resqg 1

* Define an uninitialized array of 10 (quadword) integers:

grades resqg 10

1 OntarioTech

UNIVERSITY

A Basic Program

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

A Basic Assembly Program

directives

comments

instructions

—

section

section

.data
message db "This is a message from Linux assembly!",

text

global start

; more system calls are provided in:
;http://blog.rchapman.org/posts/Linux_System Call Table for x86 64

_start:
mov rax,
mov rdi,
mov rsi,
mov rdx,
syscall

; exit

mov rax,
mov rdi,
syscall

syscall number for sys write()

standard output
what to print

how many characters to print

exit code

syscall number for sys exit()

(0 means success)

comments

Directives

* Provide instructions to the assembler
« Typically don’t cause code to be generated
 Examples
— .section text - tells the assembler the where the instructions are to
be found
— .section data - tells the assembler the where the data is to be found
— db - tells the assembler to reserve space for an 8-bit byte/character
value

1 OntarioTech

UNIVERSITY

Wrap-Up

e Assembly language programming
o Development tools
o Registers
o Variables - the data section
o A basic program

1 OntarioTech

UNIVERSITY

What is Next?

e System V ABI calling convention
e Basic input and output
o Using the c library (aka libc)

1 OntarioTech

UNIVERSITY

	Slide 1: Assembly Language Programming I x86-64 Architecture
	Slide 2
	Slide 3: Development Tools
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Registers
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15: Variables
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: A Basic Program
	Slide 22
	Slide 23
	Slide 24
	Slide 25

