Control Logic I

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

e Decode

e Execute

o Register transfer language
o Example program execution

1 OntarioTech

UNIVERSITY

Decode

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Decoding Instructions

e Decoding involves the following:
o Determine which (e.g. arithmetic) operation is to be performed
o Determine which registers (or memory, constants) are to be used for the operands

1 OntarioTech

UNIVERSITY

Decoding Instructions

e Decoding involves the following:

o Determine which (e.g. arithmetic) operation is to be performed
m Thefirst 4 bits of our instruction are the opcode
m These are fed into a 4-to-16 line decoder

m The outputs of this decoder will be fed into enable inputs for the ALU circuits
o Determine which registers (or memory, constants) are to be used for the operands

Opcode Assembly

0001 «
MOV —]

0100 —————— 44016
ADD — DEC I

0101

SUB

1000
JMP

Decoding Instructions

Decoding involves the following:

O

O

o

o

Determine which (e.g. arithmetic) operation is to be performed
Determine which registers (or memory, constants) are to be used for the operands
The first 4 bits of the operand identify the first operand

rcC

pcC

The next 4 bits of the operand are for the second operand
These will activate the input and output enables for the registers

od

The operand could also be a single constant

od

0001 -register A
0010 - register B (etc.)

This might also use a decoder

e 0 0 0 0

e 0 0 0 1

0001

0010

0011

0100

0101

0110

0111

Execute

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Register Transfer Language (RTL)

e Register transfer language
o A language used to describe microoperations
m Operations that are part of the instruction
o So called because most things involve transferring data
to/from registers

1 OntarioTech

UNIVERSITY

HAX Instruction Set: RTL

MOV A, B A < B
PC « PC + 2
IR — M[PC]

ADD A, B A A+ B
PC « PC + 2
IR « M[PC]

SUB A, B A< A-B
PC « PC + 2
IR « M[PC]

) OntarioTech

UNIVERSITY

HAX Instruction Set: RTL

LOAD B MAR « B
MBR « M[MAR]
A ~ MBR
PC « PC + 2
IR « M[PC]

STORE B MAR < B
MBR <~ A
M[MAR] < MBR
PC « PC + 2
IR « M[PC]

) OntarioTech

UNIVERSITY

HAX Instruction Set: RTL

JMP A PC « A
IR « M[PC]

Jz A IF FLAGS[Z] == 1 THEN
PC « A
ELSE
PC « PC + 2
IR « M[PC]

JINZ A IF FLAGS[Z] == 0 THEN
PC « A
ELSE
PC « PC + 2
IR — M[PC]

) OntarioTech

UNIVERSITY

HAX Instruction Set

Binary Mnemonic Operand(s) Description

0000 HALT - Stops execution

0001 MOV dest, source Copies the value from source to dest
0010 LOAD addr Loads value from memory at addr into A
0011 STORE addr Stores value from A into memory at addr
0100 ADD dest, source dest = dest + source

0101 SUB dest, source dest = dest - source

1000 JMP addr Jumps to addr

1001 JZ addr If the zero flagis set, jumps to addr
1010 JINZ addr If the zero flag is cleared, jumps to addr

A Test Program

Let’'s write a HAX assembly language program:

00: LOAD 0C ; LOAD X

02: MOV B, A

04: LOAD OD ; LOAD Y

06: ADD A, B

08: STORE OE ; STORE Z

OA: HALT

0C: 0x04 ; X: 4
0D: OxFE ;Y =2
OE: 0x00 ; Z2: 0

1 OntarioTech

UNIVERSITY

A Test Program

e Let's trace our HAX assembly language program:

X Y Z
Instr RTL Registers MeW /
A B PC IR MAR MBR oc 0D OE

Initial - ?7? ?7 00 21 ?7? ?7 04 FE 00
LOAD 0C MAR ~ 0C 04 s 02 10 0cC 04 04 FE 00

MBR « M[MAR]

A <« MBR

PC « PC + 2

IR « M[PC]
MOV B, A B « A 04 04 04 21 0cC 04 04 FE 00

PC « PC + 2

IR « M[PC]

1 OntarioTech

UNIVERSITY

A Test Program

e Let's trace our HAX assembly language program:

Instr RTL Registers Memory

A B PC IR MAR MBR oc 0D OE

LOAD 0D MAR « 0D FE 04 06 40 0D FE 04 FE 00
MBR « M[MAR]
A < MBR

PC « PC + 2
IR « M[PC]

ADD A, B A ~A+B 02 04 08 31 0D FE 04 FE 00
PC « PC + 2
IR « M[PC]

STORE OE MAR « OE 02 04 0A 00 0E 02 04 FE 02
MBR « A
M[MAR] « MBR
PC « PC + 2

IR < M[PC] Part 2

Assembly

e Assembly is the process of converting human-readable assembly language (with
mnemonics) to machine-readable machine language (in binary)
o Disassembly is just the opposite
o For simplicity, | will use hexadecimal instead of binary

1 OntarioTech

UNIVERSITY

Assembly

e Below shows the assembly of our test program:

00: LOAD 0OC 00: 210C
02: MOV B, A 02: 1021
(B: 0010 A:0001, 00100001, 33, 0x21)
04: LOAD 0D 04: 210D
06: ADD A, B - 06: 4012
(A: 0001 B:0010, 00010010, 18, 0x12) 0001 A
08: STORE OE 08: 310E
0010 B
OA: HALT 04
0000 0011 c
0C: 0x04 ; 4 0100 OC:D
04FE
0D: OxFE 5 =2 0101 E
OE: 0x00 ;0 0110 OE:;
007?7?

0111 G

Two -stage Assembly

Two-stage assembly can make our program more readable
o Use named locations for data (i.e. variables)
o Use named locations for jumps (i.e. labels)

e The stages:
Replace any symbols with the address of the symbol
2. Replace mnemonics and operands with binary equivalents (as before)

—_—

1 OntarioTech

UNIVERSITY

Two -stage Assembly

Below shows the assembly of our test program:

00:

02:

04:

06:

08:

OA:

LOAD X

MOV B, A

IOAD Y

ADD A, B

STORE Z

HALT

) OntarioTech

UMIVERSITY

210C

1021 stage 1 stage 2

- 5 stage2

210D

4012

310E

LOAD 0C

MOV B, A

LOAD 0D

ADD A, B

STORE OF

HALT

A More Complex Program

e Here is a program that loops over an array of numbers, adding pairs of them:

00:
increment
02:
04:
06:
count
08:
OA:
0C:
numbers
loopStart: OE:
10:
12:
14:
16:

1 O o

MOV D,

LOAD D
MOV D,
MOV E,

LOAD E
MOV E,
MOV C,

LOAD C
MOV B,
ADD C,
LOAD C
ADD A,

YT al

J

1A:
1C:
1E:
20:
loopStart
22:
increment: 24:
count:
INT 2
numbers:
INT 4
27:
28:
INT -6

STORE C
ADD C,
SUB E,

JNZ

HALT

INT 1

25:

26:

INT -2
INT O

29:

T N\NTT

N

D
D

A More Complex Program

e Implementing these aliases in our assembler could make our program easier to

understand:
00:

increment
02:
04:
06:
count
08:
OA:
0C:
numbers
loopStart: OE:
10:
12:
14:
16:

1 O o

MOV D,

LOAD D
MOV D,
MOV E,

LOAD E
MOV E,
MOV C,

LOAD C
MOV B,
ADD C,
LOAD C
ADD A,

YT al

J

1A:
1C:
1E:
20:
loopStart
22:
increment: 24:
count:
INT 2
numbers:
INT 4
27:
28:
INT -6

STORE C
ADD C,
CMP E,

JNE

HALT

INT 1

25:

26:

INT -2
INT O

29:

T N\NTT

N

D
D

Wrap-Up

e Decode

e Execute

o Register transfer language
o Example program execution

1 OntarioTech

UNIVERSITY

What is next?

e Assembly language programming
o Development tools
o Registers
o A basic program

	Slide 1: Control Logic II
	Slide 2: Outline
	Slide 3: Decode
	Slide 4: Decoding Instructions
	Slide 5: Decoding Instructions
	Slide 6: Decoding Instructions
	Slide 7: Execute
	Slide 8: Register Transfer Language (RTL)
	Slide 9: HAX Instruction Set: RTL
	Slide 10: HAX Instruction Set: RTL
	Slide 11: HAX Instruction Set: RTL
	Slide 12: HAX Instruction Set
	Slide 13: A Test Program
	Slide 14: A Test Program
	Slide 15: A Test Program
	Slide 16: Assembly
	Slide 17: Assembly
	Slide 18: Two-stage Assembly
	Slide 19: Two-stage Assembly
	Slide 20: A More Complex Program
	Slide 21: A More Complex Program
	Slide 22: Wrap-Up
	Slide 23

