
Control Logic II

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline
● Decode

● Execute
○ Register transfer language

○ Example program execution

Decode

CSCI 2050U - Computer Architecture

Decoding Instructions
● Decoding involves the following:

○ Determine which (e.g. arithmetic) operation is to be performed

○ Determine which registers (or memory, constants) are to be used for the operands

Decoding Instructions
● Decoding involves the following:

○ Determine which (e.g. arithmetic) operation is to be performed

■ The first 4 bits of our instruction are the opcode

■ These are fed into a 4-to-16 line decoder

■ The outputs of this decoder will be fed into enable inputs for the ALU circuits

○ Determine which registers (or memory, constants) are to be used for the operands

4-to-16

DEC

Move

Adder

...

Opcode Assembly
0001

MOV

0100

ADD

0101

SUB

1000

JMP

1001

JZ

…

...

Decoding Instructions
● Decoding involves the following:

○ Determine which (e.g. arithmetic) operation is to be performed

○ Determine which registers (or memory, constants) are to be used for the operands

■ The first 4 bits of the operand identify the first operand

● 0001 - register A

● 0010 - register B (etc.)

■ The next 4 bits of the operand are for the second operand

■ These will activate the input and output enables for the registers

● This might also use a decoder

■ The operand could also be a single constant

o pc od e 0 0 0 0 0 o p 1 0 o p 2

o pc od e 0 0 0 1 c o n s t a n t

0001 A

0010 B

0011 C

0100 D

0101 E

0110 F

0111 G

Execute

CSCI 2050U - Computer Architecture

Register Transfer Language (RTL)
● Register transfer language

○ A language used to describe microoperations

■ Operations that are part of the instruction

○ So called because most things involve transferring data

to/from registers

HAX Instruction Set: RTL
MOV A, B A ← B

PC ← PC + 2

IR ← M[PC]

ADD A, B A ← A + B

PC ← PC + 2

IR ← M[PC]

SUB A, B A ← A - B

PC ← PC + 2

IR ← M[PC]

HAX Instruction Set: RTL
LOAD B MAR ← B

MBR ← M[MAR]

A ← MBR

PC ← PC + 2

IR ← M[PC]

STORE B MAR ← B

MBR ← A

M[MAR] ← MBR

PC ← PC + 2

IR ← M[PC]

HAX Instruction Set: RTL
JMP A PC ← A

IR ← M[PC]

JZ A IF FLAGS[Z] == 1 THEN

PC ← A

ELSE

PC ← PC + 2

IR ← M[PC]

JNZ A IF FLAGS[Z] == 0 THEN

PC ← A

ELSE

PC ← PC + 2

IR ← M[PC]

HAX Instruction Set
Binary Mnemonic Operand(s) Description

0000 HALT - Stops execution

0001 MOV dest, source Copies the value from source to dest

0010 LOAD addr Loads value from memory at addr into A

0011 STORE addr Stores value from A into memory at addr

0100 ADD dest, source dest = dest + source

0101 SUB dest, source dest = dest - source

...

1000 JMP addr Jumps to addr

1001 JZ addr If the zero flag is set, jumps to addr

1010 JNZ addr If the zero flag is cleared, jumps to addr

...

A Test Program
● Let’s write a HAX assembly language program:

00: LOAD 0C ; LOAD X

02: MOV B, A

04: LOAD 0D ; LOAD Y

06: ADD A, B

08: STORE 0E ; STORE Z

0A: HALT

0C: 0x04 ; X: 4

0D: 0xFE ; Y: -2

0E: 0x00 ; Z: 0

A Test Program
● Let’s trace our HAX assembly language program:

Instr RTL Registers Memory

A B PC IR MAR MBR 0C 0D 0E

Initial - ?? ?? 00 21 ?? ?? 04 FE 00

LOAD 0C MAR ← 0C

MBR ← M[MAR]

A ← MBR

PC ← PC + 2

IR ← M[PC]

04 ?? 02 10 0C 04 04 FE 00

MOV B, A B ← A

PC ← PC + 2

IR ← M[PC]

04 04 04 21 0C 04 04 FE 00

Part 1

X Y Z

A Test Program
● Let’s trace our HAX assembly language program:

Instr RTL Registers Memory

A B PC IR MAR MBR 0C 0D 0E

LOAD 0D MAR ← 0D

MBR ← M[MAR]

A ← MBR

PC ← PC + 2

IR ← M[PC]

FE 04 06 40 0D FE 04 FE 00

ADD A, B A ← A + B

PC ← PC + 2

IR ← M[PC]

02 04 08 31 0D FE 04 FE 00

STORE 0E MAR ← 0E

MBR ← A

M[MAR] ← MBR

PC ← PC + 2

IR ← M[PC]

02 04 0A 00 0E 02 04 FE 02

Part 2

Assembly
● Assembly is the process of converting human-readable assembly language (with

mnemonics) to machine-readable machine language (in binary)

○ Disassembly is just the opposite

○ For simplicity, I will use hexadecimal instead of binary

Assembly
● Below shows the assembly of our test program:

00: LOAD 0C 00: 210C

02: MOV B, A 02: 1021

(B:0010 A:0001, 00100001, 33, 0x21)

04: LOAD 0D 04: 210D

06: ADD A, B 06: 4012

(A:0001 B:0010, 00010010, 18, 0x12)

08: STORE 0E 08: 310E

0A: HALT 0A:

0000

0C: 0x04 ; 4 0C:

04FE

0D: 0xFE ; -2

0E: 0x00 ; 0 0E:

00??

0001 A

0010 B

0011 C

0100 D

0101 E

0110 F

0111 G

Two-stage Assembly
● Two-stage assembly can make our program more readable

○ Use named locations for data (i.e. variables)

○ Use named locations for jumps (i.e. labels)

● The stages:

1. Replace any symbols with the address of the symbol

2. Replace mnemonics and operands with binary equivalents (as before)

Two-stage Assembly
● Below shows the assembly of our test program:

00: LOAD X LOAD 0C

210C

02: MOV B, A MOV B, A

1021

04: LOAD Y LOAD 0D

210D

06: ADD A, B ADD A, B

4012

08: STORE Z STORE 0E

310E

0A: HALT HALT

0000

0C: INT X = 4 ; 0x04 0x04

04

0D: INT Y = -2 ; 0xFE 0xFE

FE

0E: INT Z = 0 ; 0x00 0x00

00

stage 1 stage 2

A More Complex Program

00: MOV D,

increment

02: LOAD D

04: MOV D, A

06: MOV E,

count

08: LOAD E

0A: MOV E, A

0C: MOV C,

numbers

loopStart: 0E: LOAD C

10: MOV B, A

12: ADD C, D

14: LOAD C

16: ADD A, B

18: ADD C, D

1A: STORE C

1C: ADD C, D

1E: SUB E, D

20: JNZ

loopStart

22: HALT

increment: 24: INT 1

count: 25:

INT 2

numbers: 26:

INT 4

27: INT -2

28: INT 0

29:

INT -6

2A: INT 4

2B: INT 0

● Here is a program that loops over an array of numbers, adding pairs of them:

A More Complex Program

00: MOV D,

increment

02: LOAD D

04: MOV D, A

06: MOV E,

count

08: LOAD E

0A: MOV E, A

0C: MOV C,

numbers

loopStart: 0E: LOAD C

10: MOV B, A

12: ADD C, D

14: LOAD C

16: ADD A, B

18: ADD C, D

1A: STORE C

1C: ADD C, D

1E: CMP E, D

20: JNE

loopStart

22: HALT

increment: 24: INT 1

count: 25:

INT 2

numbers: 26:

INT 4

27: INT -2

28: INT 0

29:

INT -6

2A: INT 4

2B: INT 0

● Implementing these aliases in our assembler could make our program easier to

understand:

Wrap-Up
● Decode

● Execute
○ Register transfer language

○ Example program execution

What is next?

● Assembly language programming

○ Development tools

○ Registers

○ A basic program

	Slide 1: Control Logic II
	Slide 2: Outline
	Slide 3: Decode
	Slide 4: Decoding Instructions
	Slide 5: Decoding Instructions
	Slide 6: Decoding Instructions
	Slide 7: Execute
	Slide 8: Register Transfer Language (RTL)
	Slide 9: HAX Instruction Set: RTL
	Slide 10: HAX Instruction Set: RTL
	Slide 11: HAX Instruction Set: RTL
	Slide 12: HAX Instruction Set
	Slide 13: A Test Program
	Slide 14: A Test Program
	Slide 15: A Test Program
	Slide 16: Assembly
	Slide 17: Assembly
	Slide 18: Two-stage Assembly
	Slide 19: Two-stage Assembly
	Slide 20: A More Complex Program
	Slide 21: A More Complex Program
	Slide 22: Wrap-Up
	Slide 23

