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Outline
● Instruction cycle

● Additional digital circuit components

● Data path/bus

● Fetch



Instruction Cycle
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● A computer executes a program one instruction at a time, according to 

the instruction cycle:
○ Fetch

○ Decode

○ Execute

The Instruction Cycle



● Fetch:
○ Instruction fetch:  Load the instruction from memory

○ Operand fetch:  Load the operand(s) from memory (if any)

The Instruction Cycle



● Decode:
○ The control unit handles decoding

○ Circuit activation

■ Activate the circuit (e.g. in the ALU) to perform the requested operation

■ De-activate all other circuitry

○ Register activation

■ Activate the registers to be used for input operands

■ Activate the registers to be used for the result of the operation

■ De-activate all other registers

The Instruction Cycle



The Instruction Cycle
● Execute:

○ Allow the data to pass:

■ From the input registers

■ Through the activated ALU circuit

■ Into the output register 



A Simple Computer System
● Hypothetical Academic Computer System (HAX)

○ Simple, RISC-style, instruction set

■ Each instruction has a 4-bit opcode, 4-bits of padding, and 8-bits of operand

○ 256 word memory (8-bit words), total of 256 bytes of memory

○ 8-bit data path

○ Seven 8-bit general-purpose registers (A, B, C, D, E, F, and G)

○ Special-purpose registers:

■ PC:  Program counter (address of the next instruction)

■ IR:  Instruction register (stores the instruction opcode)

■ MAR:  Memory address register (the address in memory for read/write)

■ MBR:  Memory buffer register (the data to be written, the data read)

■ FLAGS:  Zero, Greater Than, Carry, Overflow



More Digital Circuit Components
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Decoders
● A decoder (DEC) is a component which activates (i.e. voltage high, e.g. 5v) 

one of its output lines for each unique input combination
○ Inputs:  n

○ Outputs: 2n



Decoders
● A decoder is a component which activates (i.e. voltage high, e.g. 5v) one of 

its output lines for each unique input combination
○ This is a 2-to-4 line decoder
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Decoders
● A decoder is often used for two important purposes:

○ Decoding an instruction, enabling the correct ALU circuit

○ Decoding a memory address, enabling the inputs and/or outputs of the correct memory cell



Decoders
● Decoders and other components can be drawn in block notation

○ This abstraction simplifies our job as we move to more complex circuits

DEC



Multiplexer
● A multiplexer (MUX) is a component with many inputs and only one output

○ This is a 4-to-1 multiplexer

○ Selector bits (A and B in the diagram, below) decide which input gets mapped to the output

○ Selector bits:  n

○ Input bits:  2n
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Multiplexer
● The multiplexer in block notation:
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Buses and the Data Path
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In0

In1

● A bus is similar to a wire or a connection
○ The key difference is that a bus has several parallel paths

○ e.g. Imagine an 8-bit bus between register A and register B
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● A bus is very rarely point to point
○ Usually, there are more than 2 components connected to the bus

■ The bus is a shared medium

○ We need some mechanism to control what goes onto the bus

Buses
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The Data Path:  A Shared Bus



● It isn’t really a problem if more than one component reads from the bus 

simultaneously

● It is only a problem when more than one component writes to the bus 

simultaneously
○ The signals collide, producing a distorted (unrecognizable) signal

● We block data going onto the bus using a tri-state buffer:

The Data Path:  A Shared Bus



● Here are our tri-state buffer components

Enable

The Data Path:  A Shared Bus



● Here are our tri-state buffer components
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The Data Path:  A Shared Bus



The Data Path:  A Shared Bus
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The Data Path:  The Simplest Instruction (MOV)

● Let’s consider the simplest instruction (a register transfer):
○ MOV A, B

■ Move the value from the register B into the register A
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The Data Path:  An Arithmetic Instruction (ADD)

● Let’s consider the simplest instruction:
○ ADD A, B

■ Add the value from the register B to the register A, storing the result in A

Cycle 1
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The Data Path:  An Arithmetic Instruction (ADD)

● Let’s consider the simplest instruction:
○ ADD A, B

■ Add the value from the register B to the register A, storing the result in A

Cycle 2
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Register Transfer Language (RTL)
● Many instructions can be written in RTL, which helps explain what the 

instructions do
○ These RTL instructions are also called microoperations (or microcode)

○ It isn’t necessarily the case that the hardware implements these RTL instructions 

directly, but most processors do support them

○ Example (MOV A, B)
■ A ← B

■ PC ← PC + 2

■ IR ← M[PC]



Fetch

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier



Executing Instructions
● Every instruction needs additional housekeeping:

○ Before:  The instruction needs to be fetched from memory

○ After:  The program counter needs to be updated



Instruction Fetch
● Instruction fetch:
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Instruction Fetch
● Instruction fetch:
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Increment Program Counter
● Increment program counter:
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Increment Program Counter
● Increment program counter:
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Memory Load
● In a RISC processor, memory loads are usually limited, e.g.:

○ LOAD B

■ Load the value into A from the memory address found in B
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Memory Load
● In a RISC processor, memory loads are usually limited, e.g.:

○ LOAD B

■ Load the value into A from the memory address found in B
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Memory Store
● In a RISC processor, memory stores are also usually limited, e.g.:

○ STORE B

■ Store the value in A into the memory address found in B
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Memory Store
● In a RISC processor, memory stores are also usually limited, e.g.:

○ STORE B

■ Store the value in A into the memory address found in B
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Wrap-Up
● Instruction cycle

● Additional digital circuit components

● Data path/bus

● Fetch



What is next?
● Decode

● Execute
○ Register transfer language

○ Example program execution
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