
Control Logic I

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline
● Instruction cycle

● Additional digital circuit components

● Data path/bus

● Fetch

Instruction Cycle

CSCI 2050U - Computer Architecture

● A computer executes a program one instruction at a time, according to

the instruction cycle:
○ Fetch

○ Decode

○ Execute

The Instruction Cycle

● Fetch:
○ Instruction fetch: Load the instruction from memory

○ Operand fetch: Load the operand(s) from memory (if any)

The Instruction Cycle

● Decode:
○ The control unit handles decoding

○ Circuit activation

■ Activate the circuit (e.g. in the ALU) to perform the requested operation

■ De-activate all other circuitry

○ Register activation

■ Activate the registers to be used for input operands

■ Activate the registers to be used for the result of the operation

■ De-activate all other registers

The Instruction Cycle

The Instruction Cycle
● Execute:

○ Allow the data to pass:

■ From the input registers

■ Through the activated ALU circuit

■ Into the output register

A Simple Computer System
● Hypothetical Academic Computer System (HAX)

○ Simple, RISC-style, instruction set

■ Each instruction has a 4-bit opcode, 4-bits of padding, and 8-bits of operand

○ 256 word memory (8-bit words), total of 256 bytes of memory

○ 8-bit data path

○ Seven 8-bit general-purpose registers (A, B, C, D, E, F, and G)

○ Special-purpose registers:

■ PC: Program counter (address of the next instruction)

■ IR: Instruction register (stores the instruction opcode)

■ MAR: Memory address register (the address in memory for read/write)

■ MBR: Memory buffer register (the data to be written, the data read)

■ FLAGS: Zero, Greater Than, Carry, Overflow

More Digital Circuit Components

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Decoders
● A decoder (DEC) is a component which activates (i.e. voltage high, e.g. 5v)

one of its output lines for each unique input combination
○ Inputs: n

○ Outputs: 2n

Decoders
● A decoder is a component which activates (i.e. voltage high, e.g. 5v) one of

its output lines for each unique input combination
○ This is a 2-to-4 line decoder

00

01

10

11

Decoders
● A decoder is often used for two important purposes:

○ Decoding an instruction, enabling the correct ALU circuit

○ Decoding a memory address, enabling the inputs and/or outputs of the correct memory cell

Decoders
● Decoders and other components can be drawn in block notation

○ This abstraction simplifies our job as we move to more complex circuits

DEC

Multiplexer
● A multiplexer (MUX) is a component with many inputs and only one output

○ This is a 4-to-1 multiplexer

○ Selector bits (A and B in the diagram, below) decide which input gets mapped to the output

○ Selector bits: n

○ Input bits: 2n

output

input1

input2

input3

input4

Multiplexer
● The multiplexer in block notation:

output

input1

input2

input3

input4

MUX

Buses and the Data Path

CSCI 2050U - Computer Architecture

In0

In1

● A bus is similar to a wire or a connection
○ The key difference is that a bus has several parallel paths

○ e.g. Imagine an 8-bit bus between register A and register B

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

In2

In3

In4

In5

In6

In7

In0

In1

In2

In3

In4

In5

In6

In7

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

A
8-bit

register

B
8-bit

register

Buses

● A bus is very rarely point to point
○ Usually, there are more than 2 components connected to the bus

■ The bus is a shared medium

○ We need some mechanism to control what goes onto the bus

Buses

In0

In1

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

In2

In3

In4

In5

In6

In7

In0

In1

In2

In3

In4

In5

In6

In7

Out0

Out1

Out2

Out3

Out4

Out5

Out6

Out7

A
8-bit

register

B
8-bit

register

ALU

MAR

MBR

B

IR ?

?

?

?

?

?

...

A

The Data Path: A Shared Bus

● It isn’t really a problem if more than one component reads from the bus

simultaneously

● It is only a problem when more than one component writes to the bus

simultaneously
○ The signals collide, producing a distorted (unrecognizable) signal

● We block data going onto the bus using a tri-state buffer:

The Data Path: A Shared Bus

● Here are our tri-state buffer components

Enable

The Data Path: A Shared Bus

● Here are our tri-state buffer components

Enable

Output

Enable

The Data Path: A Shared Bus

The Data Path: A Shared Bus

ALU

MAR

MBR

B

IR OE

OE

OE

OE

OE

OE

IE

IE

IE

IE

A
IE

...

The Data Path: The Simplest Instruction (MOV)

● Let’s consider the simplest instruction (a register transfer):
○ MOV A, B

■ Move the value from the register B into the register A

0

0

0

0

1

0

0

1

0

0

0

ALU

MAR

MBR

B

IR OE

OE

OE

OE

OE

OE

IE

IE

IE

IE

A
IE

...

The Data Path: An Arithmetic Instruction (ADD)

● Let’s consider the simplest instruction:
○ ADD A, B

■ Add the value from the register B to the register A, storing the result in A

Cycle 1

0

0

0

0

0

0

0

1

0

0

0

ALU

MAR

MBR

B

IR OE

OE

OE

OE

OE

OE

IE

IE

IE

IE

A
IE

...

The Data Path: An Arithmetic Instruction (ADD)

● Let’s consider the simplest instruction:
○ ADD A, B

■ Add the value from the register B to the register A, storing the result in A

Cycle 2

0

0

0

0

1

0

0

0

0

1

0

ALU

MAR

MBR

B

IR OE

OE

OE

OE

OE

OE

IE

IE

IE

IE

A
IE

...

Register Transfer Language (RTL)
● Many instructions can be written in RTL, which helps explain what the

instructions do
○ These RTL instructions are also called microoperations (or microcode)

○ It isn’t necessarily the case that the hardware implements these RTL instructions

directly, but most processors do support them

○ Example (MOV A, B)
■ A ← B

■ PC ← PC + 2

■ IR ← M[PC]

Fetch

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Executing Instructions
● Every instruction needs additional housekeeping:

○ Before: The instruction needs to be fetched from memory

○ After: The program counter needs to be updated

Instruction Fetch
● Instruction fetch:

0

1

0

0

0

0

0

0

0

0

0

ALU

MAR

MBR

B

OE

OE

OE

OE

OE

OE

IE

IE

IE

IE

A
IE

...

Cycle 1

IR

0 1

OEPC

Instruction Fetch
● Instruction fetch:

1

0

0

0

0

0

1

0

0

0

0

ALU

MAR

MBR

B

OE

OE

OE

OE

OE

OE

IE

IE

IE

IE

A
IE

...

Cycle 2

IR

0 0

OEPC

Increment Program Counter
● Increment program counter:

ALU

MAR

MBR

B

A

IR

OE

OE

OE

OE

OE

IE

IE

IE

IE

IE

0

0

0

0

0

0

0

0

0

0

0

PC OE

IE0 1

OE

...

Cycle 1

Increment Program Counter
● Increment program counter:

ALU

MAR

MBR

B

A

IR

OE

OE

OE

OE

OE

IE

IE

IE

IE

IE

0

0

0

0

0

0

0

0

0

1

0

PC OE

IE1 0

OE

...

Cycle 2

Memory Load
● In a RISC processor, memory loads are usually limited, e.g.:

○ LOAD B

■ Load the value into A from the memory address found in B

ALU

MAR

MBR

B

A

IR

OE

OE

OE

OE

OE

IE

IE

IE

IE

IE

0

1

0

0

0

0

0

1

0

0

0

PC OE
IE0 0

OE

..

.

Cycle 1

Memory Load
● In a RISC processor, memory loads are usually limited, e.g.:

○ LOAD B

■ Load the value into A from the memory address found in B

ALU

MAR

MBR

B

A

IR

OE

OE

OE

OE

OE

IE

IE

IE

IE

IE

0

1

0

0

0

0

PC OE
IE 0

OE

..

.

Cycle 2

0

0

0

0

1

0

Memory Store
● In a RISC processor, memory stores are also usually limited, e.g.:

○ STORE B

■ Store the value in A into the memory address found in B

ALU

MAR

MBR

B

A

IR

OE

OE

OE

OE

OE

IE

IE

IE

IE

IE

0

0

0

1

0

0

PC OE
IE 0

OE

..

.

Cycle 1

0

0

1

0

0

0

Memory Store
● In a RISC processor, memory stores are also usually limited, e.g.:

○ STORE B

■ Store the value in A into the memory address found in B

ALU

MAR

MBR

B

A

IR

OE

OE

OE

OE

OE

IE

IE

IE

IE

IE

0

0

1

0

0

0

PC OE
IE 0

OE

..

.

Cycle 2

0

1

0

0

0

0

Wrap-Up
● Instruction cycle

● Additional digital circuit components

● Data path/bus

● Fetch

What is next?
● Decode

● Execute
○ Register transfer language

○ Example program execution

	Slide 1: Control Logic I
	Slide 2: Outline
	Slide 3: Instruction Cycle
	Slide 4: The Instruction Cycle
	Slide 5: The Instruction Cycle
	Slide 6: The Instruction Cycle
	Slide 7: The Instruction Cycle
	Slide 8: A Simple Computer System
	Slide 9: More Digital Circuit Components
	Slide 10: Decoders
	Slide 11: Decoders
	Slide 12: Decoders
	Slide 13: Decoders
	Slide 14: Multiplexer
	Slide 15: Multiplexer
	Slide 16: Buses and the Data Path
	Slide 17: Buses
	Slide 18: Buses
	Slide 19: The Data Path: A Shared Bus
	Slide 20: The Data Path: A Shared Bus
	Slide 21: The Data Path: A Shared Bus
	Slide 22: The Data Path: A Shared Bus
	Slide 23: The Data Path: A Shared Bus
	Slide 24: The Data Path: The Simplest Instruction (MOV)
	Slide 25: The Data Path: An Arithmetic Instruction (ADD)
	Slide 26: The Data Path: An Arithmetic Instruction (ADD)
	Slide 27: Register Transfer Language (RTL)
	Slide 28: Fetch
	Slide 29: Executing Instructions
	Slide 30: Instruction Fetch
	Slide 31: Instruction Fetch
	Slide 32: Increment Program Counter
	Slide 33: Increment Program Counter
	Slide 34: Memory Load
	Slide 35: Memory Load
	Slide 36: Memory Store
	Slide 37: Memory Store
	Slide 38: Wrap-Up
	Slide 39: What is next?

