Control Logic |

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

Instruction cycle

Additional digital circuit components
Data path/bus

Fetch

1 OntarioTech

UNIVERSITY

Instruction Cycle

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

The Instruction Cycle

e A computer executes a program one instruction at a time, according to

the instruction cycle:

o Fetch
o Decode
o Execute

instruction loaded

Circuit complete ALU circuit activated

The Instruction Cycle

e [etch:

o Instruction fetch: Load the instruction from memory
o Operand fetch: Load the operand(s) from memory (if any)

1 OntarioTech

UNIVERSITY

The Instruction Cycle

e Decode:

o The control unit handles decoding

o Circuit activation
m Activate the circuit (e.g. in the ALU) to perform the requested operation
m De-activate all other circuitry

o Register activation
m Activate the registers to be used for input operands
m Activate the registers to be used for the result of the operation
m De-activate all other registers

1 OntarioTech

UNIVERSITY

The Instruction Cycle

e Execute:
o Allow the data to pass:
m From the input registers
m Through the activated ALU circuit
m Into the output register

1 OntarioTech

UNIVERSITY

A Simple Computer System

e Hypothetical Academic Computer System (HAX)

Simple, RISC-style, instruction set

(@)

O O O O

Each instruction has a 4-bit opcode, 4-bits of padding, and 8-bits of operand

256 word memory (8-bit words), total of 256 bytes of memory
8-bit data path

Seven 8-bit general-purpose registers (A, B, C, D, E, F, and G)
Special-purpose registers:

PC: Program counter (address of the next instruction)

IR: Instruction register (stores the instruction opcode)

MAR: Memory address register (the address in memory for read/write)
MBR: Memory buffer register (the data to be written, the data read)
FLAGS: Zero, Greater Than, Carry, Overflow

1 OntarioTech

UNIVERSITY

More Digital Circuit Components

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Decoders

e A decoder (DEC) is a component which activates (i.e. voltage high, e.g. 5v)

one of its output lines for each unique input combination

o Inputs: n
o Outputs: 2n

1

- :
1
>

Decoders

e A decoder is a component which activates (i.e. voltage high, e.g. 5v) one of

its output lines for each unique input combination
o Thisis a 2-to-4 line decoder

- :
1
>

Xy 11

Xy 10

1

XY o0

T_
B
DJ’Y 01
D

Decoders

e A decoder is often used for two important purposes:
o Decoding an instruction, enabling the correct ALU circuit
o Decoding a memory address, enabling the inputs and/or outputs of the correct memory cell

X

e— [-
>

Y

slels]e

Decoders

e Decoders and other components can be drawn in block notation
o This abstraction simplifies our job as we move to more complex circuits

x — X'y
Y — xy’
DEC

X’Y

Multiplexer

e A multiplexer (MUX) is a component with many inputs and only one output

o Thisis a 4-to-1 multiplexer
o Selector bits (A and B in the diagram, below) decide which input gets mapped to the output
o Selector bits: r A B
o Input bits: y, ’_:I7 ’37

input;, \

input, |

_j output
input; \ %}
input, \

Multiplexer

e The multiplexer in block notation:

A B

input, -

input, -
MUX
— output
input; -

input, -

Buses and the Data Path

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Buses

e A bus is similar to a wire or a connection
o The key difference is that a bus has several parallel paths
o e.g.Imagine an 8-bit bus between register A and register B

Ing Out, In, Out,
In Out; In, out;
In, Out, In, out,
Iny Outs Insg Outs
— A \ B _—
In, r:'_b‘t out, } J| In, 8-bit Out,
— gister register |
Ing Outs Ing Outs
Ing Outg Ing Outyg
In, Out, In, Out,

Buses

e A bus is very rarely point to point
o Usually, there are more than 2 components connected to the bus
m The busis a shared medium

o We need some mechanism to control what goes onto the bus

Ing

In,

Inz

In3

Ing

Ing

Ing

In,

A
8-bit
register

Outy In,
Out, In,
Out, In,
Out, \ Ins
Outy, } Ing
Outs Insg
Outyg Ing
Out, Iny

B
8-bit
register

Outo
Out1
Out2

Out3

Outy
Out5
Out6

Out7

The Data Path: A Shared Bus

The Data Path: A Shared Bus

e |tisn’t really a problem if more than one component reads from the bus

simultaneously
e |tis only a problem when more than one component writes to the bus

simultaneously
o The signals collide, producing a distorted (unrecognizable) signal

e We block data going onto the bus using a tri-state buffer:

Enable

Input :b— Dutput
.-"'-' F{#-
__.-"

The Data Path: A Shared Bus

e Here are our tri-state buffer components

>
N

r

I\l/

I\l/

l//
N

rd

7T

\

Enable T

The Data Path: A Shared Bus

e Here are our tri-state buffer components

Output
Enable

Enable

The Data Path: A Shared Bus

IR

MAR

MBR

\ ALU

a8 g

The Data Path: The Simplest Instruction (MOV)

e Let's consider the simplest instruction (a register transfer):
o MOV A, B
m Move the value from the register B into the register A

IR

MAR
MBR

The Data Path: An Arithmetic Instruction (ADD)

e Let's consider the simplest instruction:
o ADD A, B
m Add the value from the register B to the register A, storing the result in A

IR

MAR
MBR

Cycle 1

The Data Path: An Arithmetic Instruction (ADD)

e Let's consider the simplest instruction:
o ADD A, B
m Add the value from the register B to the register A, storing the result in A

IR

MAR
MBR

Cycle 2

Register Transfer Language (RTL)

e Many instructions can be written in RTL, which helps explain what the

instructions do

o These RTL instructions are also called microoperations (or microcode)
o ltisn't necessarily the case that the hardware implements these RTL instructions
directly, but most processors do support them

o Example (MOV A, B)
m A B
B PC - PC + 2
B IR — M[PC]

1 OntarioTech

UNIVERSITY

Fetch

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Executing Instructions

e Every instruction needs additional housekeeping:
o Before: The instruction needs to be fetched from memory
o After: The program counter needs to be updated

1 OntarioTech

UNIVERSITY

Instruction Fetch

e |nstruction fetch:

Cycle 1

PC
IR T —
MAR
MBR
B
A
/] ok |

\ ALU

Instruction Fetch

e |nstruction fetch:

Cycle 2

PC
IR T —
MAR
MBR
B
A
/] ok |

\ ALU

Increment Program Counter

e Increment program counter:

PC ‘
IR o [
MAR os | —
MBR
B
A
A
ALU

Cycle 1

Increment Program Counter

e Increment program counter:

PC ‘
IR o [
MAR os | —
MBR
B
A
A
ALU

Cycle 2

Memory Load

e In a RISC processor, memory loads are usually limited, e.g.:
o LOAD B
m Load the value into A from the memory address found in B

— PC |
0 — IE IR 0

le——=. MAR
= weR
o .~ B |

: . A
/| OE | |
ALU O

Cycle 1

Memory Load

e In a RISC processor, memory loads are usually limited, e.g.:
o LOAD B
m Load the value into A from the memory address found in B

— PC |
0 — IE IR 0

le—=. MAR
= weR
o I |

1 . A
/| OE | |
ALU O

Cycle 2

Memory Store

e In a RISC processor, memory stores are also usually limited, e.g.:
o STORE B
m Store the value in A into the memory address found in B

— PC L
0 — 1E IR 0

le—=. MAR
T
o I |

: - A
/| oE | |
ALU O

Cycle 1

Memory Store

e In a RISC processor, memory stores are also usually limited, e.g.:
o STORE B
m Store the value in A into the memory address found in B

— PC L
0 — 1E IR 0

le——=. MAR
== wer
o .~ B |

: - A
/| oE | |
ALU O

Cycle 2

Wrap-Up

Instruction cycle

Additional digital circuit components
Data path/bus

Fetch

1 OntarioTech

UNIVERSITY

What is next?

e Decode

e Execute

o Register transfer language
o Example program execution

1 OntarioTech

UNIVERSITY

	Slide 1: Control Logic I
	Slide 2: Outline
	Slide 3: Instruction Cycle
	Slide 4: The Instruction Cycle
	Slide 5: The Instruction Cycle
	Slide 6: The Instruction Cycle
	Slide 7: The Instruction Cycle
	Slide 8: A Simple Computer System
	Slide 9: More Digital Circuit Components
	Slide 10: Decoders
	Slide 11: Decoders
	Slide 12: Decoders
	Slide 13: Decoders
	Slide 14: Multiplexer
	Slide 15: Multiplexer
	Slide 16: Buses and the Data Path
	Slide 17: Buses
	Slide 18: Buses
	Slide 19: The Data Path: A Shared Bus
	Slide 20: The Data Path: A Shared Bus
	Slide 21: The Data Path: A Shared Bus
	Slide 22: The Data Path: A Shared Bus
	Slide 23: The Data Path: A Shared Bus
	Slide 24: The Data Path: The Simplest Instruction (MOV)
	Slide 25: The Data Path: An Arithmetic Instruction (ADD)
	Slide 26: The Data Path: An Arithmetic Instruction (ADD)
	Slide 27: Register Transfer Language (RTL)
	Slide 28: Fetch
	Slide 29: Executing Instructions
	Slide 30: Instruction Fetch
	Slide 31: Instruction Fetch
	Slide 32: Increment Program Counter
	Slide 33: Increment Program Counter
	Slide 34: Memory Load
	Slide 35: Memory Load
	Slide 36: Memory Store
	Slide 37: Memory Store
	Slide 38: Wrap-Up
	Slide 39: What is next?

