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The Instruction Cycle

e A computer executes a program one instruction at a time, according to

the instruction cycle:

o Fetch
o Decode
o Execute

instruction loaded

Circuit complete ALU circuit activated



The Instruction Cycle

e [etch:

o Instruction fetch: Load the instruction from memory
o Operand fetch: Load the operand(s) from memory (if any)
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The Instruction Cycle

e Decode:

o The control unit handles decoding

o Circuit activation
m Activate the circuit (e.g. in the ALU) to perform the requested operation
m De-activate all other circuitry

o Register activation
m Activate the registers to be used for input operands
m Activate the registers to be used for the result of the operation
m De-activate all other registers
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The Instruction Cycle

e Execute:
o Allow the data to pass:
m From the input registers
m Through the activated ALU circuit
m Into the output register
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A Simple Computer System

e Hypothetical Academic Computer System (HAX)

Simple, RISC-style, instruction set
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Each instruction has a 4-bit opcode, 4-bits of padding, and 8-bits of operand

256 word memory (8-bit words), total of 256 bytes of memory
8-bit data path

Seven 8-bit general-purpose registers (A, B, C, D, E, F, and G)
Special-purpose registers:

PC: Program counter (address of the next instruction)

IR: Instruction register (stores the instruction opcode)

MAR: Memory address register (the address in memory for read/write)
MBR: Memory buffer register (the data to be written, the data read)
FLAGS: Zero, Greater Than, Carry, Overflow

1 OntarioTech

UNIVERSITY




More Digital Circuit Components

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY



Decoders

e A decoder (DEC) is a component which activates (i.e. voltage high, e.g. 5v)

one of its output lines for each unique input combination

o Inputs: n
o Outputs: 2n
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Decoders

e A decoder is a component which activates (i.e. voltage high, e.g. 5v) one of

its output lines for each unique input combination
o Thisis a 2-to-4 line decoder
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Decoders

e A decoder is often used for two important purposes:
o Decoding an instruction, enabling the correct ALU circuit
o Decoding a memory address, enabling the inputs and/or outputs of the correct memory cell
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Decoders

e Decoders and other components can be drawn in block notation
o This abstraction simplifies our job as we move to more complex circuits

x — X'y
Y — xy’
DEC
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Multiplexer

e A multiplexer (MUX) is a component with many inputs and only one output

o Thisis a 4-to-1 multiplexer
o Selector bits (A and B in the diagram, below) decide which input gets mapped to the output
o Selector bits: r A B
o Input bits: y, ’_:I7 ’37
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Multiplexer

e The multiplexer in block notation:

A B

input, -

input, -
MUX
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Buses and the Data Path
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Buses

e A bus is similar to a wire or a connection
o The key difference is that a bus has several parallel paths
o e.g.Imagine an 8-bit bus between register A and register B
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Buses

e A bus is very rarely point to point
o Usually, there are more than 2 components connected to the bus
m The busis a shared medium

o We need some mechanism to control what goes onto the bus
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The Data Path: A Shared Bus




The Data Path: A Shared Bus

e |tisn’t really a problem if more than one component reads from the bus

simultaneously
e |tis only a problem when more than one component writes to the bus

simultaneously
o The signals collide, producing a distorted (unrecognizable) signal

e We block data going onto the bus using a tri-state buffer:

Enable

Input :b— Dutput
.-"'-' F{#-
__.-"



The Data Path: A Shared Bus

e Here are our tri-state buffer components
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The Data Path: A Shared Bus

e Here are our tri-state buffer components
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The Data Path: A Shared Bus
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The Data Path: The Simplest Instruction (MOV)

e Let's consider the simplest instruction (a register transfer):
o MOV A, B
m Move the value from the register B into the register A
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The Data Path: An Arithmetic Instruction (ADD)

e Let's consider the simplest instruction:
o ADD A, B
m Add the value from the register B to the register A, storing the result in A

IR

MAR
MBR

Cycle 1



The Data Path: An Arithmetic Instruction (ADD)

e Let's consider the simplest instruction:
o ADD A, B
m Add the value from the register B to the register A, storing the result in A

IR

MAR
MBR

Cycle 2



Register Transfer Language (RTL)

e Many instructions can be written in RTL, which helps explain what the

instructions do

o These RTL instructions are also called microoperations (or microcode)
o ltisn't necessarily the case that the hardware implements these RTL instructions
directly, but most processors do support them

o Example (MOV A, B)
m A B
B PC - PC + 2
B IR — M[PC]
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Executing Instructions

e Every instruction needs additional housekeeping:
o Before: The instruction needs to be fetched from memory
o After: The program counter needs to be updated
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Instruction Fetch

e |nstruction fetch:

Cycle 1
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Instruction Fetch

e |nstruction fetch:

Cycle 2
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Increment Program Counter

e Increment program counter:

PC ‘
IR o [
MAR os | —
MBR
B
A
A
ALU

Cycle 1



Increment Program Counter

e Increment program counter:

PC ‘
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Memory Load

e In a RISC processor, memory loads are usually limited, e.g.:
o LOAD B
m Load the value into A from the memory address found in B
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Memory Load

e In a RISC processor, memory loads are usually limited, e.g.:
o LOAD B
m Load the value into A from the memory address found in B
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Memory Store

e In a RISC processor, memory stores are also usually limited, e.g.:
o STORE B
m Store the value in A into the memory address found in B
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Memory Store

e In a RISC processor, memory stores are also usually limited, e.g.:
o STORE B
m Store the value in A into the memory address found in B
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What is next?

e Decode

e Execute

o Register transfer language
o Example program execution
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