
Memory III

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

● Caching

● Virtual memory

Caching

CSCI 2050U - Computer Architecture

Locality

● Principle of locality: if we need a datum, other data nearby are likely to

also be required

○ Temporal locality: Recently-used data may be needed again

○ Spatial locality: Accesses tend to be clustered in similar memory locations

(addresses)

■ Sequential locality: Instructions and data are often accessed linearly

● e.g. arrays, linear code blocks

∙ For simplicity, we often focus on registers and RAM

○ Frequently used data will be placed into registers

○ Less frequently used data will be placed into RAM

∙ Caching considers the possibility that there may be data in between

○ Data that is frequently transferred from RAM, but numerous enough to make registers impractical

∙ Caching types:

○ Explicit

○ Implicit

Caching

Caching

∙ A cache is not explicitly used by a programmer

○ A programmer requests data from RAM

○ If the data is in the cache (hit), the request is intercepted and the cached data is returned

○ If the data is not in the cache (miss), when the data (from RAM) makes its way back, it may

be added to the cache

∙ To the programmer, these two situations are functionally identical

○ However, the performance is not identical

Caching Basics

Caching Basics

∙ L1 cache

○ Located inside the processor cores

○ ~32Kb per core for data, ~32Kb per core for instructions

∙ L2 cache

○ Usually, located inside the processor cores

○ Larger than L1 (~1MB per core, data only), but slower/farther away

∙ L3 cache

○ Located on the SoC, but not inside the cores

○ Much larger than L2 (~15MB shared, data only)

Caching

∙ Acache = Amain mod N

Direct-Mapped Caches

∙ The cache entries in a direct-mapped cache will contain the following:

○ Offset: The cache address, as computed by the modulo formula

○ Tag: The rest of the RAM address

○ Block: The actual data

○ Valid?: Does this block contain valid data?

TagValid? Offset Block(s)

Direct-Mapped Caches

∙ The cache entries in a direct-mapped cache will contain the following:

○ Offset: The cache address, as computed by the modulo formula

○ Tag: The rest of the RAM address

○ Block: The actual data

○ Valid?: Does this block contain valid data?

TagValid? Block(s)

Direct-Mapped Caches

Direct-Mapped Caches

∙ Imagine writing a program to add the corresponding values from two

separate arrays of integers:

○ list1: Located at address 000

○ list2: Located at address 100

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:
Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:
Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:
Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:
Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:
Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:

0

0

0

0

24

15

-7

31

Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:

1

1

1

1

-20

16

-4

0

Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:

1

1

1

1

-20

16

-4

0

Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:

1

1

1

1

-20

16

-4

0

Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:

1

1

1

1

-20

16

-4

0

Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:

0

0

0

0

24

15

-7

31

Thrashing

n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:

1

1

1

1

-20

16

-4

0

Thrashing

∙ Direct-mapped caches only let you store one chunk of memory in the cache

○ If you are accessing two arrays, in two different parts of memory, this will lead to very

inefficient cache utilization

∙ An associative-mapped cache lets you store any block(s) from anywhere in RAM

○ As any block can be mapped to any line in the cache, we need to be able to identify the

rest of the main memory address

■ e.g. store the entire address in the tag

■ e.g. use the LSBs to determine a cache line number, store the rest of the address

○ This is more overhead, but could lead to better cache utilization

Associative-Mapped Caches

● When the cache is full, unwanted values must be removed to make room

for requested data

○ How do we determine what data is unwanted?

■ First in, first out (FIFO)

■ Random

■ Least recently used (LRU)

Cache Replacement

∙ How can you write code that results in more efficient caching?

○ Focus on optimizing code executed more:

■ Inner loops are more important than outer loops

■ Common cases (likely code paths; e.g. if vs. else)

○ Commonly used variables should be local scope

■ The compiler will often put these into registers

○ Iterate over arrays using stride-1 reference patterns (i.e. one after the other)

■ Sequential access has maximum spatial locality

Cache-Aware Programming

Virtual Memory

CSCI 2050U - Computer Architecture

∙ Virtual memory is a mapping between RAM and non-volatile storage (SSDs and

HDDs)

○ A virtual memory address may reference data that is loaded into RAM (at some physical

memory address)

○ A virtual memory address may also reference data that is not currently loaded into RAM,

but is still on a disk

Virtual Memory

∙ You can think of virtual memory as a form of RAM-based caching for disk data

○ Cache blocks in virtual memory are called pages

○ Loading a disk data page to/from RAM is called paging/swapping

∙ Virtual memory can suffer from thrashing, just like SRAM caches

○ An application (or pair of applications) alternately request a page, which keeps getting

swapped into the same memory location, swapping each other out

○ As this involves a disk load, this can have a big impact on performance

Virtual Memory

∙ Physical addresses (PA) are the actual addresses used by the hardware to request

reads/writes from/to RAM

∙ Virtual addresses (VA) are the addresses used by programmers/compilers to

reference memory locations

○ Pointers

○ References

∙ Translation between PAs and VAs is done by the memory management unit (MMU)

Virtual Addressing

∙ page hit: When a program tries to access a virtual address within a page that is

currently located in memory

∙ page fault: When a program tries to access a virtual address within a page that is not

currently located in memory

∙ swapped out: When a page in memory is moved to disk

∙ swapped in: When a page on disk is moved to memory

∙ page: A unit of memory (equivalent to a cache’s block)

Terminology

∙ A page table is a data structure used to store the location of a page

Page Tables

● Each page table does not map a single cell, as discussed previously

● Each page is a sequence of memory cells

● The page table will use a portion of the virtual address as the offset within the page

○ e.g. Page size is 4k, then the offset would be 12 bits (212 = 4096 = 4k)

● Each page table entry will contain the base address for the page in memory

○ The resulting physical address would then be: base_address + offset

Virtual Address Translation

1. Memory is separated for each process

○ Virtual address mapping is unique to each process

○ Other processes cannot access the same physical addresses, since there is no mapping present

2. Simplified linking/loading

○ Some operating systems load programs into the same virtual address

○ The memory structure of every running program is identical

3. Simplified memory allocation

○ Pages do not need to be physically contiguous to be part of a contiguous virtual memory

structure

4. Better address utilization

Advantages of Virtual Memory

Program A

Program B

Virtual Memory Allocation

Shared Data

Program A

Program B

Page Faults

● When a page is requested, but the page table entry shows that the page is located on

disk, a page fault occurs

○ The CPU will generate a page fault exception (also called an interrupt)

○ The operating system will have a handler for this exception that will load the page

into memory

○ An old page will be chosen to be removed from memory

● What if the data in the old page has been changed?

○ This is called a dirty page

○ Before the new page can be loaded, the existing page must be written to disk

Wrap-up

● Caching

● Virtual memory

What is next?
● Instruction cycle

● Additional digital circuit components

● Data path/bus

● Fetch

	Slide 1: Memory III
	Slide 2
	Slide 3: Caching
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30: Virtual Memory
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 43
	Slide 44: What is next?

