
Memory III

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier



Outline
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Locality

● Principle of locality:  if we need a datum, other data nearby are likely to 

also be required

○ Temporal locality:  Recently-used data may be needed again

○ Spatial locality:  Accesses tend to be clustered in similar memory locations 

(addresses)

■ Sequential locality:  Instructions and data are often accessed linearly

● e.g. arrays, linear code blocks



∙ For simplicity, we often focus on registers and RAM

○ Frequently used data will be placed into registers

○ Less frequently used data will be placed into RAM

∙ Caching considers the possibility that there may be data in between

○ Data that is frequently transferred from RAM, but numerous enough to make registers impractical

∙ Caching types:

○ Explicit

○ Implicit

Caching
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∙ A cache is not explicitly used by a programmer

○ A programmer requests data from RAM

○ If the data is in the cache (hit), the request is intercepted and the cached data is returned

○ If the data is not in the cache (miss), when the data (from RAM) makes its way back, it may 

be added to the cache

∙ To the programmer, these two situations are functionally identical

○ However, the performance is not identical

Caching Basics
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∙ L1 cache

○ Located inside the processor cores

○ ~32Kb per core for data, ~32Kb per core for instructions

∙ L2 cache

○ Usually, located inside the processor cores

○ Larger than L1 (~1MB per core, data only), but slower/farther away

∙ L3 cache

○ Located on the SoC, but not inside the cores

○ Much larger than L2 (~15MB shared, data only)

Caching



∙ Acache = Amain mod N

Direct-Mapped Caches



∙ The cache entries in a direct-mapped cache will contain the following:

○ Offset:  The cache address, as computed by the modulo formula

○ Tag:  The rest of the RAM address

○ Block:  The actual data

○ Valid?:  Does this block contain valid data?

TagValid? Offset Block(s)

Direct-Mapped Caches
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∙ Imagine writing a program to add the corresponding values from two 

separate arrays of integers:

○ list1:  Located at address 000

○ list2:  Located at address 100
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n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)
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while n <= 3:
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n = 0

while n <= 3:

x = list1[n]
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n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)
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n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)
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n = 0

while n <= 3:
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n += 1
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n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)

24

15

-7

31

-20

16

-4

0

000

001

010

011

100

101

110

111

RAM:

0

0

0

0

00

01

10

11

Cache:

1

1

1

1

-20

16

-4

0

Thrashing



n = 0

while n <= 3:

x = list1[n]

y = list2[n]

n += 1

print(x + y)
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n = 0

while n <= 3:

x = list1[n]
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∙ Direct-mapped caches only let you store one chunk of memory in the cache

○ If you are accessing two arrays, in two different parts of memory, this will lead to very 

inefficient cache utilization

∙ An associative-mapped cache lets you store any block(s) from anywhere in RAM

○ As any block can be mapped to any line in the cache, we need to be able to identify the 

rest of the main memory address

■ e.g. store the entire address in the tag

■ e.g. use the LSBs to determine a cache line number, store the rest of the address

○ This is more overhead, but could lead to better cache utilization

Associative-Mapped Caches



● When the cache is full, unwanted values must be removed to make room 

for requested data

○ How do we determine what data is unwanted?

■ First in, first out (FIFO)

■ Random

■ Least recently used (LRU)

Cache Replacement



∙ How can you write code that results in more efficient caching?

○ Focus on optimizing code executed more:

■ Inner loops are more important than outer loops

■ Common cases (likely code paths; e.g. if vs. else)

○ Commonly used variables should be local scope

■ The compiler will often put these into registers

○ Iterate over arrays using stride-1 reference patterns (i.e. one after the other)

■ Sequential access has maximum spatial locality

Cache-Aware Programming
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∙ Virtual memory is a mapping between RAM and non-volatile storage (SSDs and 

HDDs)

○ A virtual memory address may reference data that is loaded into RAM (at some physical 

memory address)

○ A virtual memory address may also reference data that is not currently loaded into RAM, 

but is still on a disk

Virtual Memory



∙ You can think of virtual memory as a form of RAM-based caching for disk data

○ Cache blocks in virtual memory are called pages

○ Loading a disk data page to/from RAM is called paging/swapping

∙ Virtual memory can suffer from thrashing, just like SRAM caches

○ An application (or pair of applications) alternately request a page, which keeps getting 

swapped into the same memory location, swapping each other out

○ As this involves a disk load, this can have a big impact on performance

Virtual Memory



∙ Physical addresses (PA) are the actual addresses used by the hardware to request 

reads/writes from/to RAM

∙ Virtual addresses (VA) are the addresses used by programmers/compilers to 

reference memory locations

○ Pointers

○ References

∙ Translation between PAs and VAs is done by the memory management unit (MMU)

Virtual Addressing



∙ page hit:  When a program tries to access a virtual address within a page that is 

currently located in memory

∙ page fault:  When a program tries to access a virtual address within a page that is not 

currently located in memory

∙ swapped out:  When a page in memory is moved to disk

∙ swapped in:  When a page on disk is moved to memory

∙ page:  A unit of memory (equivalent to a cache’s block)

Terminology



∙ A page table is a data structure used to store the location of a page

Page Tables



● Each page table does not map a single cell, as discussed previously

● Each page is a sequence of memory cells

● The page table will use a portion of the virtual address as the offset within the page

○ e.g. Page size is 4k, then the offset would be 12 bits (212 = 4096 = 4k)

● Each page table entry will contain the base address for the page in memory

○ The resulting physical address would then be: base_address + offset

Virtual Address Translation



1. Memory is separated for each process

○ Virtual address mapping is unique to each process

○ Other processes cannot access the same physical addresses, since there is no mapping present

2. Simplified linking/loading

○ Some operating systems load programs into the same virtual address

○ The memory structure of every running program is identical

3. Simplified memory allocation

○ Pages do not need to be physically contiguous to be part of a contiguous virtual memory 

structure

4. Better address utilization

Advantages of Virtual Memory



Program A

Program B

Virtual Memory Allocation



Shared Data

Program A

Program B



Page Faults

● When a page is requested, but the page table entry shows that the page is located on 

disk, a page fault occurs

○ The CPU will generate a page fault exception (also called an interrupt)

○ The operating system will have a handler for this exception that will load the page 

into memory

○ An old page will be chosen to be removed from memory

● What if the data in the old page has been changed?

○ This is called a dirty page

○ Before the new page can be loaded, the existing page must be written to disk



Wrap-up

● Caching

● Virtual memory



What is next?
● Instruction cycle

● Additional digital circuit components

● Data path/bus

● Fetch
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