Memory lii

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

e Caching

e \Virtual memory

1 OntarioTech

UNIVERSITY

Caching

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Locality

e Principle of locality: if we need a datum, other data nearby are likely to

also be required
o Temporal locality: Recently-used data may be needed again
o Spatial locality: Accesses tend to be clustered in similar memory locations
(addresses)
m Sequential locality: Instructions and data are often accessed linearly

e e.g. arrays, linear code blocks

1 OntarioTech

UNIVERSITY

Caching

For simplicity, we often focus on registers and RAM

o Frequently used data will be placed into registers

o Less frequently used data will be placed into RAM

Caching considers the possibility that there may be data in between

o Data thatis frequently transferred from RAM, but numerous enough to make registers impractical
Caching types:

o Explicit

o Implicit

1 OntarioTech

UNIVERSITY

Memory Controller

Shared L3 Cache' -

Caching Basics

A cache is not explicitly used by a programmer

o A programmer requests data from RAM

o If the data is in the cache (hit), the request is intercepted and the cached data is returned

o If the data is not in the cache (miss), when the data (from RAM) makes its way back, it may

be added to the cache

To the programmer, these two situations are functionally identical

o However, the performance is not identical

1 OntarioTech

UNIVERSITY

Caching Basics

Fetch RA word
and deliver
to CPU

containing RA

Load main
into cache line

to CPU

@D

Caching

L1 cache

o Located inside the processor cores

o ~32Kb per core for data, ~32Kb per core for instructions
L2 cache

o Usually, located inside the processor cores

o Largerthan L1 (~1MB per core, data only), but slower/farther away
L3 cache

o Located on the SoC, but not inside the cores
o Much larger than L2 (~15MB shared, data only)

1 OntarioTech

UNIVERSITY

Direct-Mapped Caches

Acache = Amain mod N

Cache
00

01
10

1"

Blgck ¢ Blgck
Block Block
1 1
Block Block
2 2
Block Block
3 3

Block
4
Block
5
Block
6
Block

Main Memory
000

001
010
on
100
101
110

m

Direct-Mapped Caches

The cache entries in a direct-mapped cache will contain the following:
o Offset: The cache address, as computed by the modulo formula
o Tag: The rest of the RAM address

o Block: The actual data
o Valid?: Does this block contain valid data?

Valid? Tag Offset Block(s)

1 OntarioTech

UNIVERSITY

Direct-Mapped Caches

The cache entries in a direct-mapped cache will contain the following:
o Offset: The cache address, as computed by the modulo formula
o Tag: The rest of the RAM address

o Block: The actual data
o Valid?: Does this block contain valid data?

Valid? Tag Block(s)

1 OntarioTech

UNIVERSITY

Direct-Mapped Caches

Address (32 bits) Index Valid Tag Data
0
1
22 | 101 2
Index 3 To CPU
1022
1023
Ta 3
2 ’f= N Hit

1 OntarioTech

UNIVERSITY

Thrashing

RAM:
000 24
Imagine writing a program to add the corresponding values from two 001l 1s
separate arrays of integers:

010 =7

o 1listl: Located ataddress 000
011 31

o 1ist2: Located ataddress 100
100, -20
101 16
110/ -4
111 0

1 OntarioTech

UNIVERSITY

Th raShing Cache: RAM:

00 0 000 24
n =20
01 0 001 15
while n <= 3:
100 010, -7
X = listl[n]
11 0 011 31
y = list2[n]
100, =20
n +=1
print (x + V) 101 1o
110 -4
111 0

1 OntarioTech

UNIVERSITY

Th raShing Cache: RAM:

00 0 000 24
n=20
01 0 001 15
while n <= 3:
100 010, -7
X = listl[n]
11 0 011 31
y = list2[n]
100, =20
n +=1
print (x + V) 101 1o
110 -4
111 0

1 OntarioTech

UNIVERSITY

Th raShing Cache: RAM:

00 0 000 24
n =20
01 0 001 15
while n <= 3:
100 010, -7
X = listl[n]
11 0 011 31
y = list2[n]
100, =20
n +=1
print (x + V) 101 1o
110 -4
111 0

1 OntarioTech

UNIVERSITY

Thrashing

Cache: RAM:
00 0 000 24
n =20
01 0 001 15
while n <= 3:
100 010, -7
X = listl[n]
11 0 011 31
y = list2[n]
100| =20
n +=1
print(x + vy) 101 16
110 -4
111 0

1 OntarioTech

UNIVERSITY

Thrashing

Cache:
00 0 0 24 | «———— 000
n =20
01 0 0 15 | «—— 001
while n <= 3:
10 0 0 -7 «—— 010
X = listl[n]
11 0 0 31 | «— 011
y = list2[n]
100
n +=1
print(x + v) 101
110
111

1 OntarioTech

UNIVERSITY

RAM:

24

15

31

-20

16

Thrashing

n =20

while n <= 3:
X = listl[n]
y = list2[n]
n +=1

print (x + vy)

1 OntarioTech

UNIVERSITY

00

01

10

11

Cache:

0

0

000

001

010

011

100

101

110

111

RAM:
24

15

31

-20

16

Thrashing

n =20

while n <= 3:
X = listl[n]
y = list2[n]
n +=1

print (x + vy)

1 OntarioTech

UNIVERSITY

00

01

10

11

Cache:

0

0

000

001

010

011

100

101

110

111

RAM:

24

15

31

-20

16

Thrashing

n =0

while n <= 3:
X = listl[n]
y = list2[n]
n +=1

print(x + y)

1 OntarioTech

UNIVERSITY

00

01

10

11

Cache:

0

0

000

001

010

011

100

101

110

111

RAM:

24

15

31

-20

16

Thrashing

n =0

while n <= 3:
X = listl[n]
y = list2[n]
n +=1

print (x + vy)

1 OntarioTech

UNIVERSITY

00

01

10

11

Cache:

0

0

000

001

010

011

100

101

110

111

RAM:

24

15

31

-20

16

Thrashing

Cache:
00 0 0 24 | «———— 000
n =20
01 0 0 15 | «—— 001
while n <= 3:
10 0 0 -7 «—— 010
X = listl[n]
11 0 0 31 | «— 011
y = list2[n]
100
n +=1
print(x + v) 101
110
111

1 OntarioTech

UNIVERSITY

RAM:

24

15

31

-20

16

Thrashing

n =20

while n <= 3:
X = listl[n]
y = list2[n]
n +=1

print (x + vy)

1 OntarioTech

UNIVERSITY

00

01

10

11

Cache:

0

0

000

001

010

011

100

101

110

111

RAM:
24

15

31

-20

16

Associative-Mapped Caches

Direct-mapped caches only let you store one chunk of memory in the cache
o If you are accessing two arrays, in two different parts of memory, this will lead to very
inefficient cache utilization
An associative-mapped cache lets you store any block(s) from anywhere in RAM
o As any block can be mapped to any line in the cache, we need to be able to identify the

rest of the main memory address
m e.g. store the entire address in the tag

m e.g. use the LSBs to determine a cache line number, store the rest of the address

o This is more overhead, but could lead to better cache utilization

1 OntarioTech

UNIVERSITY

Cache Replacement

e \When the cache is full, unwanted values must be removed to make room

for requested data
o How do we determine what data is unwanted?
m Firstin, first out (FIFO)
m Random

m Least recently used (LRU)

1 OntarioTech

UNIVERSITY

Cache-Aware Programming

How can you write code that results in more efficient caching?

o Focus on optimizing code executed more:
m Inner loops are more important than outer loops

m Common cases (likely code paths; e.g. if vs. else)

o Commonly used variables should be local scope

m The compiler will often put these into registers

o lterate over arrays using stride-1 reference patterns (i.e. one after the other)

m Sequential access has maximum spatial locality

1 OntarioTech

UNIVERSITY

Virtual Memory

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Virtual Memory

Virtual memory is a mapping between RAM and non-volatile storage (SSDs and
HDDs)

o A virtual memory address may reference data that is loaded into RAM (at some physical
memory address)
o A virtual memory address may also reference data that is not currently loaded into RAM,

but is still on a disk

1 OntarioTech

UNIVERSITY

Virtual Memory

You can think of virtual memory as a form of RAM-based caching for disk data
o Cache blocks in virtual memory are called pages
o Loading a disk data page to/from RAM is called paging/swapping
Virtual memory can suffer from thrashing, just like SRAM caches
o An application (or pair of applications) alternately request a page, which keeps getting
swapped into the same memory location, swapping each other out

o Asthisinvolves a disk load, this can have a big impact on performance

1 OntarioTech

UNIVERSITY

Virtual Addressing

Physical addresses (PA) are the actual addresses used by the hardware to request
reads/writes from/to RAM
Virtual addresses (VA) are the addresses used by programmers/compilers to

reference memory locations
o Poainters

o References

Translation between PAs and VAs is done by the memory management unit (MMU)

1 OntarioTech

UNIVERSITY

Terminology

page hit. When a program tries to access a virtual address within a page that is

currently located in memory

page fault. When a program tries to access a virtual address within a page that is not
currently located in memory

swapped out. When a page in memory is moved to disk

swapped in: When a page on disk is moved to memory

page: A unit of memory (equivalent to a cache’s block)

1 OntarioTech

UNIVERSITY

Page Tables

A page table is a data structure used to store the location of a page

Physical page
number or
Valid disk address
PTEO| 0 null

e 7

~

null P ¢

lolo|m|lo |- |-

PTE 7

~
« s
. ‘\\
Memory resident ~~

page table
(DRAM)

G‘/ RS

Physical memory

(DRAM)
VP 1 PPO
VP2
VP 7
VP4 PP3

Virtual memory
(disk)

VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

Virtual Address Translation

e Each page table does not map a single cell, as discussed previously

e FEach page is a sequence of memory cells

e The page table will use a portion of the virtual address as the offset within the page
o e.g. Page size is 4k, then the offset would be 12 bits (212 = 4096 = 4k)

e [Each page table entry will contain the base address for the page in memory

o The resulting physical address would then be: base address + offset

1 OntarioTech

UNIVERSITY

Advantages of Virtual Memory

1. Memory is separated for each process

o Virtual address mapping is unique to each process

o Other processes cannot access the same physical addresses, since there is no mapping present
2. Simplified linking/loading

o Some operating systems load programs into the same virtual address

o The memory structure of every running program is identical
3. Simplified memory allocation

o Pages do not need to be physically contiguous to be part of a contiguous virtual memory

structure

4. Better address utilization

1 OntarioTech

UNIVERSITY

Virtual Memory Allocation

Program A

Program B

Shared Data

Program A

’/

%

Program B

Page Faults

e When a page is requested, but the page table entry shows that the page is located on
disk, a page fault occurs
o The CPU will generate a page fault exception (also called an interrupt)

o The operating system will have a handler for this exception that will load the page
into memory

o An old page will be chosen to be removed from memory
e What if the data in the old page has been changed?
o Thisis called a dirty page

o Before the new page can be loaded, the existing page must be written to disk

1 OntarioTech

UNIVERSITY

Wrap-up

e Caching

e \Virtual memory

1 OntarioTech

UNIVERSITY

What is next?

Instruction cycle

Additional digital circuit components
Data path/bus

Fetch

1 OntarioTech

UNIVERSITY

	Slide 1: Memory III
	Slide 2
	Slide 3: Caching
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30: Virtual Memory
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 43
	Slide 44: What is next?

