Memory |

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

e Finite state machines
e Oscillators (clock)
e Latches

) OntarioTech

UNIVERSITY

Finite State Machines

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Finite State Machines (FSMs)

e Also called finite state automata (singular: finite state automaton)

e A model which as a finite number of states
o Inputs may cause transitions between those states

e They are used to model situations where we care about what happened
before

e This is a state machine that differentiates between strings that end with a
and strings that end with b:

a

Drawn using http:/madebyevan.com/fsm

http://madebyevan.com/fsm/

Finite State Machines (FSMs)

e Let's say that we want to create a device for our parking lot that will let our
customers pay the flat rate of $5 using $1 or $2 coins:

Drawn using http./madebyevan.com/fsm/

http://madebyevan.com/fsm/

Finite State Machines (FSMs)

e Let's saythat we want to create a device for recognizing a sequence of bits
o The sequence must end in 1, but cannot have 00 anywhere
o Note the self transitions in this state diagram

Drawn using http./madebyevan.com/fsm/

http://madebyevan.com/fsm/

Finite State Machines (FSMs)

e An FSM representing a 1-bit storage:

O O

Drawn using http:/madebyevan.com/ffsm/

) OntarioTech

UNIVERSITY

http://madebyevan.com/fsm/

Finite State Machines (FSMs)

e Let'sdo an example
o Let's create an FSM to recognize our locker combination: 4 6 4

Drawn using http:/madebyevan.com/ffsm/

) OntarioTech

UNIVERSITY

http://madebyevan.com/fsm/

FSM — Circuit

e Let's try to convert this simple FSM into a circuit:

O O

Drawn using http:/madebyevan.com/ffsm/

1 OntarioTech

UNIVERSITY

http://madebyevan.com/fsm/

FSM — Circuit

e \What if we did this?

o Does this work?

input Q; Qi
0 0 0
1 0 1 0
owmm o Jill—r—
0 1 1 1

Drawn using http:/madebyevan.com/ffsm/

1 OntarioTech

UNIVERSITY

http://madebyevan.com/fsm/

FSM — Circuit

e \What if we did this?

o Does this work?
o It works once, but we need a continuing
storage input Q Q’

o Let’s forge ahead, anyway 0 0 0

l 0 1 0

1 OntarioTech

UNIVERSITY

FSM — Circuit

e Simplifying this circuit (e.g. with a K-map) will be left as an exercise

Q’ = input Q' input
input Q Q’
0 0 0
0 1 0
1 0 1
1 1 1

1 OntarioTech

UNIVERSITY

FSM — Circuit

e This won’t work repeatedly
o There are no logic gates to refresh the signal
o Attenuation and noise will eventually destroy the signal

input Q'

1 OntarioTech

UNIVERSITY

FSM — Circuit

e This is a bit better
o The NOT gates will refresh the signal
o With two NOT gates, the value will not change
e The problem is that any change to input will change the value

o If input always had the correct value, we would not need memory
o What if input comes from an ALU circuit?

Q’

input —b—DO—
o

FSM — Circuit

e The circuit below is our first sequential logic circuit
o You can always identify a sequential logic circuit by the feedback (cycles, circular
patterns) in the graph
e Imagine the value continuously travelling around the circular path
o How fast?

Q’

input —b—DO—
o

FSM — Circuit

e The circuit below is our first sequential logic circuit
You can always identify a sequential logic circuit by the feedback (cycles, circular

O

patterns) in the graph

e Imagine the value continuously travelling around the circular path

O

©)

O

How fast?

The signal would be slower than the speed of light, due to the wire’s resistance

This is called the circuit’s propagation delay

input —d—DO—
o

Q’

Oscillators and the Clock

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Oscillator

e The circuit below is a bit surprising
o It may seem like a logical contradiction
o Theinput to the NOT gate is the same as its output, yet a NOT gate inverts its
input
e Remembering that every circuit has a propagation delay, though, it

should become obvious that this circuit oscillates between 0 and 1:

C

L o

The Clock

e Modern computers use something like an oscillator to choreograph

the operations of its circuits
o The signal generated by the oscillator is called the clock signal
e The oscillators used in moderns computers looks nothing like this
o We expect to be able to tune the clock frequency to our needs

m Factory clocking
m Overclocking

L o

The Clock

e The purpose of the clock is to make sure everything happens at the
right time

©)

©)

O

©)

Load the first value into register A from memory

Load the second value into register B from memory

Add register A to register B, putting the result into register A
Store register A into memory

e The clock signal is a predictable pattern, with regular timing

Vi |---- —

WL

f=1/t

The Clock

e The purpose of the clock is to make sure everything happens at the
right time

Load the first value into register A from memory:
Positive edge
Load the second value into register B from memory
Negative edge
Add register A to register B, putting the result into register A

©)

O

O

©)

edge
Store register A int

T = Uf pmﬂiffdg:
WAVLWA
'/U time

negative edge

Positive

Storage

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Latches

e The sequential logic circuits, with feedback, that we’ve seen are
used to create latches and flip flops

e A latch is a 1-bit storage sequential circuit
e Here is a common latch, called an S-R latch:

R

(3]

Latches

e The S-R latch will be a good introductory storage component
o S: Set-when this inputis 1, the value stored in the latch will become 1
o R: Reset - when this inputis 1, the value stored in the latch will become 0

3]|

Latches

e Let's examine every combination of input Q R S Q. Q.

values:
0 0 0 ? ?
0 0 1
R
Q 0 1 0
0 1 1
1 0 0
a 1 0 1
S
1 1 0

Latches

e Let's examine every combination of input Q R s Q. Q.

values:
0 0 0 0 1
0 0 1 ? ?
R
Q 0 1 0
0 1 1
1 0 0
a 1 0 1
S
1 1 0

Latches

e Let's examine every combination of input Q R s Q. Q.

values:
0 0 0 0 1
0 0 1 1 0
R
Q 0 1 0 ? ?
0 1 1
1 0 0
a 1 0 1
S
1 1 0

Latches

e Let's examine every combination of input Q R s Q. Q.

values:
0 0 0 0 1
0 0 1 1 0
R
Q 0 1 0 0 1
0 1 1 ? ?
1 0 0
a 1 0 1
S
1 1 0

Latches

e Let's examine every combination of input

values:

3]|

Qi+1

undef

undef

Qi+1’

undef

undef

Latches

e Let's examine every combination of input

values:

3]|

Qi+1

undef

Qi+1’

undef

Latches

e Let's examine every combination of input Q R s Q. Q.

values:
0 0 0 0 1
0 0 1 1 0
R
Q 0 1 0 0 1
0 1 1 undef undef
1 0 0 1 0
a 1 0 1 1 0
S
1 1 0 ? ?

1 1 1 undef undef

Latches

e Let's examine every combination of input Q R s Q. Q.

values:
0 0 0 0 1
0 0 1 1 0
R
Q 0 1 0 0 1
0 1 1 undef undef
1 0 0 1 0
a 1 0 1 1 0
S
1 1 0 0 1

1 1 1 undef undef

SR Latches

e We can re-write this table more efficiently:

e This is the block diagram representation of an SR latch:

S Q R S Qi.q
o B 0 0 0
0 1 1
R DG 1 0 0

1 1 undef

Wrap-up

e Finite state machines
e Oscillators (clock)
e Latches

) OntarioTech

UNIVERSITY

Up Next

e Flip flops

e Registers
o Counters

e RAM
e The memory hierarchy

1 OntarioTech

UNIVERSITY

	Slide 1: Memory I
	Slide 2: Outline
	Slide 3: Finite State Machines
	Slide 4: Finite State Machines (FSMs)
	Slide 5: Finite State Machines (FSMs)
	Slide 6: Finite State Machines (FSMs)
	Slide 7: Finite State Machines (FSMs)
	Slide 8: Finite State Machines (FSMs)
	Slide 9: FSM → Circuit
	Slide 10: FSM → Circuit
	Slide 11: FSM → Circuit
	Slide 12: FSM → Circuit
	Slide 13: FSM → Circuit
	Slide 14: FSM → Circuit
	Slide 15: FSM → Circuit
	Slide 16: FSM → Circuit
	Slide 17: Oscillators and the Clock
	Slide 18: Oscillator
	Slide 19: The Clock
	Slide 20: The Clock
	Slide 21: The Clock
	Slide 22: Storage
	Slide 23: Latches
	Slide 24: Latches
	Slide 25: Latches
	Slide 26: Latches
	Slide 27: Latches
	Slide 28: Latches
	Slide 29: Latches
	Slide 30: Latches
	Slide 31: Latches
	Slide 32: Latches
	Slide 33: SR Latches
	Slide 34: Wrap-up
	Slide 35: Up Next

