
Memory I

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

● Finite state machines

● Oscillators (clock)

● Latches

Finite State Machines

CSCI 2050U - Computer Architecture

Finite State Machines (FSMs)

● Also called finite state automata (singular: finite state automaton)

● A model which as a finite number of states
○ Inputs may cause transitions between those states

● They are used to model situations where we care about what happened

before

● This is a state machine that differentiates between strings that end with a

and strings that end with b:

Drawn using http://madebyevan.com/fsm/

http://madebyevan.com/fsm/

Finite State Machines (FSMs)

● Let’s say that we want to create a device for our parking lot that will let our

customers pay the flat rate of $5 using $1 or $2 coins:

Drawn using http://madebyevan.com/fsm/

http://madebyevan.com/fsm/

Finite State Machines (FSMs)

● Let’s say that we want to create a device for recognizing a sequence of bits
○ The sequence must end in 1, but cannot have 00 anywhere

○ Note the self transitions in this state diagram

Drawn using http://madebyevan.com/fsm/

http://madebyevan.com/fsm/

Finite State Machines (FSMs)

● An FSM representing a 1-bit storage:

Drawn using http://madebyevan.com/fsm/

http://madebyevan.com/fsm/

Finite State Machines (FSMs)

● Let’s do an example
○ Let’s create an FSM to recognize our locker combination: 4 6 4

Drawn using http://madebyevan.com/fsm/

Here is the answer:

http://madebyevan.com/fsm/

FSM → Circuit

● Let’s try to convert this simple FSM into a circuit:

Drawn using http://madebyevan.com/fsm/

http://madebyevan.com/fsm/

FSM → Circuit

● What if we did this?
○ Does this work?

input Qi Qi+1

0 0 0

0 1 0

1 0 1

1 1 1

Drawn using http://madebyevan.com/fsm/

http://madebyevan.com/fsm/

FSM → Circuit

● What if we did this?
○ Does this work?

○ It works once, but we need a continuing

storage

○ Let’s forge ahead, anyway

input Q Q’

0 0 0

0 1 0

1 0 1

1 1 1

FSM → Circuit

● Simplifying this circuit (e.g. with a K-map) will be left as an exercise

Q’ = input

input Q Q’

0 0 0

0 1 0

1 0 1

1 1 1

Q’ input

FSM → Circuit

● This won’t work repeatedly
○ There are no logic gates to refresh the signal

○ Attenuation and noise will eventually destroy the signal

input Q’

FSM → Circuit

● This is a bit better
○ The NOT gates will refresh the signal

○ With two NOT gates, the value will not change

● The problem is that any change to input will change the value
○ If input always had the correct value, we would not need memory

○ What if input comes from an ALU circuit?

input

Q’

FSM → Circuit

● The circuit below is our first sequential logic circuit
○ You can always identify a sequential logic circuit by the feedback (cycles, circular

patterns) in the graph

● Imagine the value continuously travelling around the circular path
○ How fast?

input

Q’

FSM → Circuit

● The circuit below is our first sequential logic circuit
○ You can always identify a sequential logic circuit by the feedback (cycles, circular

patterns) in the graph

● Imagine the value continuously travelling around the circular path
○ How fast?

○ The signal would be slower than the speed of light, due to the wire’s resistance

○ This is called the circuit’s propagation delay

input

Q’

Oscillators and the Clock

CSCI 2050U - Computer Architecture

Oscillator

● The circuit below is a bit surprising
○ It may seem like a logical contradiction

○ The input to the NOT gate is the same as its output, yet a NOT gate inverts its

input

● Remembering that every circuit has a propagation delay, though, it

should become obvious that this circuit oscillates between 0 and 1:

C

The Clock

● Modern computers use something like an oscillator to choreograph

the operations of its circuits
○ The signal generated by the oscillator is called the clock signal

● The oscillators used in moderns computers looks nothing like this
○ We expect to be able to tune the clock frequency to our needs

■ Factory clocking

■ Overclocking
C

The Clock

● The purpose of the clock is to make sure everything happens at the

right time
○ Load the first value into register A from memory

○ Load the second value into register B from memory

○ Add register A to register B, putting the result into register A

○ Store register A into memory

● The clock signal is a predictable pattern, with regular timing

f = 1/t

The Clock

● The purpose of the clock is to make sure everything happens at the

right time
○ Load the first value into register A from memory:

Positive edge

○ Load the second value into register B from memory

Negative edge

○ Add register A to register B, putting the result into register A Positive

edge

○ Store register A into memory

Negative edge

Storage

CSCI 2050U - Computer Architecture

Latches

● The sequential logic circuits, with feedback, that we’ve seen are

used to create latches and flip flops

● A latch is a 1-bit storage sequential circuit

● Here is a common latch, called an S-R latch:

Latches

● The S-R latch will be a good introductory storage component
○ S: Set - when this input is 1, the value stored in the latch will become 1

○ R: Reset - when this input is 1, the value stored in the latch will become 0

Latches

● Let’s examine every combination of input

values:
Qi R S Qi+1 Qi+1

0 0 0 ? ?

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Latches

● Let’s examine every combination of input

values:
Qi R S Qi+1 Qi+1’

0 0 0 0 1

0 0 1 ? ?

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Latches

● Let’s examine every combination of input

values:
Qi R S Qi+1 Qi+1’

0 0 0 0 1

0 0 1 1 0

0 1 0 ? ?

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Latches

● Let’s examine every combination of input

values:
Qi R S Qi+1 Qi+1’

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 ? ?

1 0 0

1 0 1

1 1 0

1 1 1

Latches

● Let’s examine every combination of input

values:
Qi R S Qi+1 Qi+1’

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 undef undef

1 0 0 ? ?

1 0 1

1 1 0

1 1 1 undef undef

Latches

● Let’s examine every combination of input

values:
Qi R S Qi+1 Qi+1’

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 undef undef

1 0 0 1 0

1 0 1 ? ?

1 1 0

1 1 1 undef undef

Latches

● Let’s examine every combination of input

values:
Qi R S Qi+1 Qi+1’

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 undef undef

1 0 0 1 0

1 0 1 1 0

1 1 0 ? ?

1 1 1 undef undef

Latches

● Let’s examine every combination of input

values:
Qi R S Qi+1 Qi+1’

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 undef undef

1 0 0 1 0

1 0 1 1 0

1 1 0 0 1

1 1 1 undef undef

SR Latches

● We can re-write this table more efficiently:

● This is the block diagram representation of an SR latch:

R S Qi+1

0 0 Qi

0 1 1

1 0 0

1 1 undef

Wrap-up

● Finite state machines

● Oscillators (clock)

● Latches

Up Next

● Flip flops

● Registers
○ Counters

● RAM

● The memory hierarchy

	Slide 1: Memory I
	Slide 2: Outline
	Slide 3: Finite State Machines
	Slide 4: Finite State Machines (FSMs)
	Slide 5: Finite State Machines (FSMs)
	Slide 6: Finite State Machines (FSMs)
	Slide 7: Finite State Machines (FSMs)
	Slide 8: Finite State Machines (FSMs)
	Slide 9: FSM → Circuit
	Slide 10: FSM → Circuit
	Slide 11: FSM → Circuit
	Slide 12: FSM → Circuit
	Slide 13: FSM → Circuit
	Slide 14: FSM → Circuit
	Slide 15: FSM → Circuit
	Slide 16: FSM → Circuit
	Slide 17: Oscillators and the Clock
	Slide 18: Oscillator
	Slide 19: The Clock
	Slide 20: The Clock
	Slide 21: The Clock
	Slide 22: Storage
	Slide 23: Latches
	Slide 24: Latches
	Slide 25: Latches
	Slide 26: Latches
	Slide 27: Latches
	Slide 28: Latches
	Slide 29: Latches
	Slide 30: Latches
	Slide 31: Latches
	Slide 32: Latches
	Slide 33: SR Latches
	Slide 34: Wrap-up
	Slide 35: Up Next

