

Digital Logic Optimization II

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

- Karnaugh maps
 - 2-variable
 - 3-variable
 - 4-variable

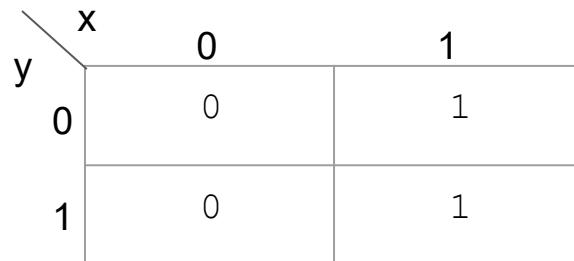
Karnaugh Maps - 2 Variable

CSCI 2050U - Computer Architecture

Karnaugh Maps (K-Maps)

- A K-map is a systematic way of simplifying Boolean algebraic expressions (in SOP form; alternatively truth tables)
 - First, we draw a sort of coiled-up truth table:

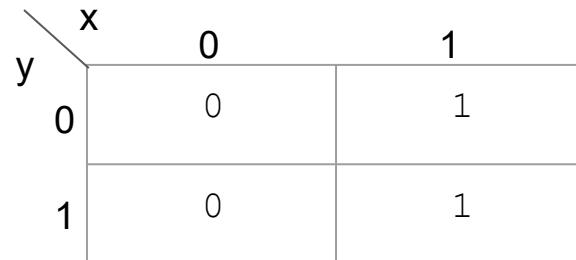
x	y	$xy + xy'$
0	0	0
0	1	0
1	0	1
1	1	1



	x	0	1
y	0	0	1
1	0	1	

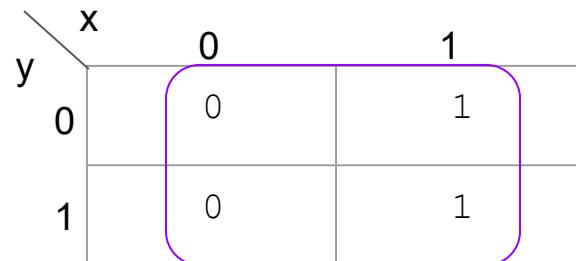
Karnaugh Maps (K-Maps)

- Next, we look for rectangles that are made entirely of 1s
 - We look only for rectangles that are size 2^n (for any n)
 - We prefer rectangles that are larger over smaller rectangles


x	y	$xy + xy'$
0	0	0
0	1	0
1	0	1
1	1	1

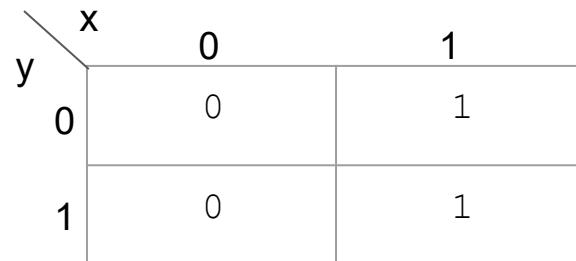
Karnaugh Maps (K-Maps)

- Next, we look for rectangles that are made entirely of 1s
 - This K-map has 4 spots
 - Does it have any rectangles of size 4? (e.g. 2x2)


x	y	$xy + xy'$
0	0	0
0	1	0
1	0	1
1	1	1

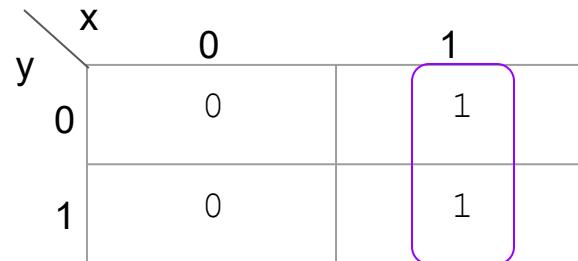
Karnaugh Maps (K-Maps)

- Next, we look for rectangles that are made entirely of 1s
 - This K-map has 4 spots
 - Does it have any rectangles of size 4? (e.g. 2x2) No (there is only one)


x	y	$xy + xy'$
0	0	0
0	1	0
1	0	1
1	1	1

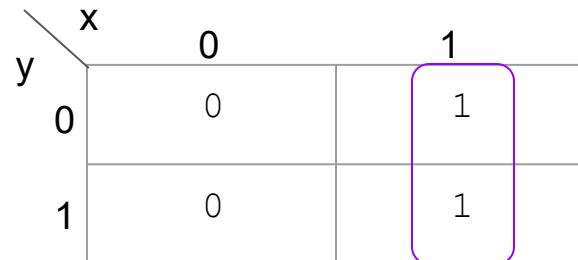
Karnaugh Maps (K-Maps)

- Next, we look for rectangles that are made entirely of 1s
 - This K-map has 4 spots
 - Does it have any rectangles of size 2? (e.g. 1x2 or 2x1)


x	y	$xy + xy'$
0	0	0
0	1	0
1	0	1
1	1	1

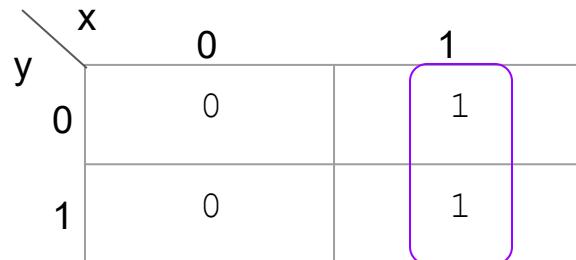
Karnaugh Maps (K-Maps)

- Next, we look for rectangles that are made entirely of 1s
 - This K-map has 4 spots
 - Does it have any rectangles of size 2? (e.g. 1x2 or 2x1) Yes
 - Every rectangle can be represented by an expression
 - What is the expression in this case?


x	y	$xy + xy'$
0	0	0
0	1	0
1	0	1
1	1	1

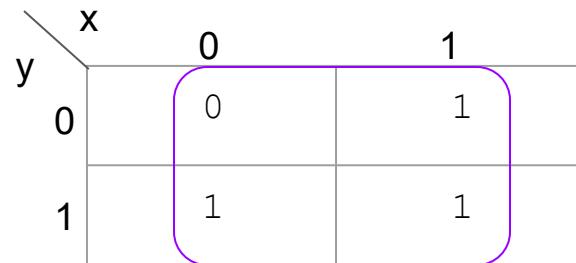
Karnaugh Maps (K-Maps)

- Next, we look for rectangles that are made entirely of 1s
 - Both of these 1s represent different values for y
 - ... but they also both represent the same value of x
 - In fact, the rectangle covers every situation where $x = 1$
 - The expression, therefore, is x ($x=0$ would be x')


x	y	$xy + xy'$
0	0	0
0	1	0
1	0	1
1	1	1

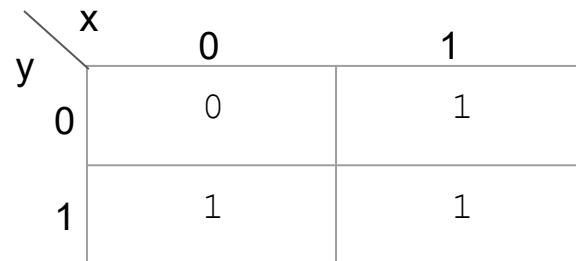
Karnaugh Maps (K-Maps)

- Next, we look for rectangles that are made entirely of 1s
 - Since the rectangle we just found covers all of the 1s in the K-map, we are done
 - The simplified expression is, therefore, $f(x, y) = x$
- *Note: Rectangles can, and often do, overlap*


x	y	$xy + xy'$
0	0	0
0	1	0
1	0	1
1	1	1

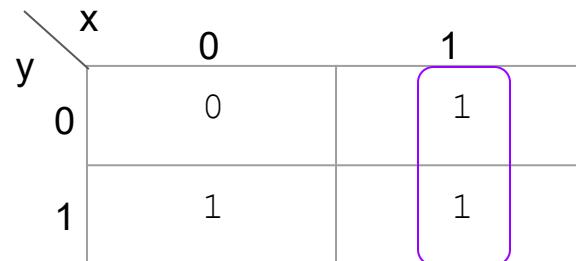
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Any rectangles of size 4?


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

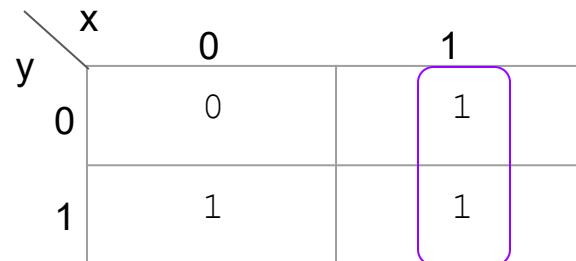
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Any rectangles of size 4? No
 - Any rectangles of size 2?


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

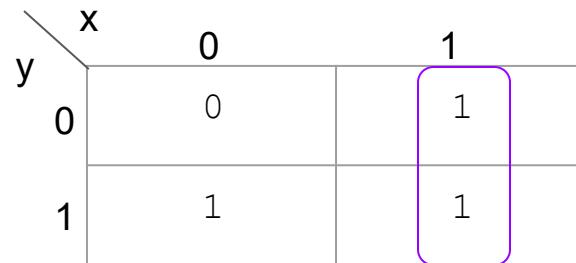
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Any rectangles of size 4? No
 - Any rectangles of size 2? Yes
 - What is the expression for this rectangle?


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

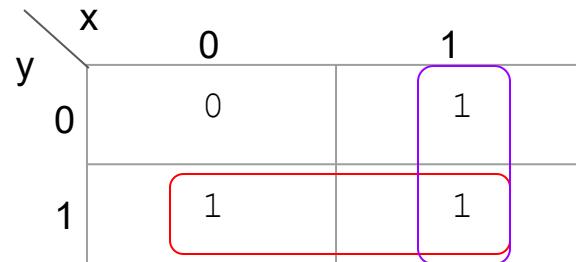
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Any rectangles of size 4? No
 - Any rectangles of size 2? Yes
 - What is the expression for this rectangle? x


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

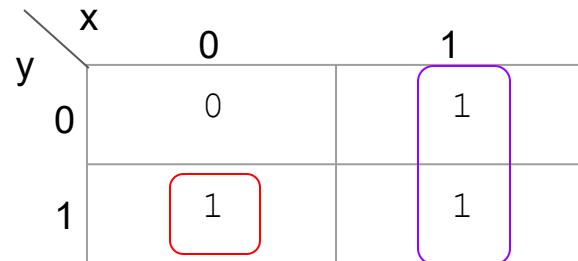
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Any rectangles of size 4? No
 - Any more rectangles of size 2?


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

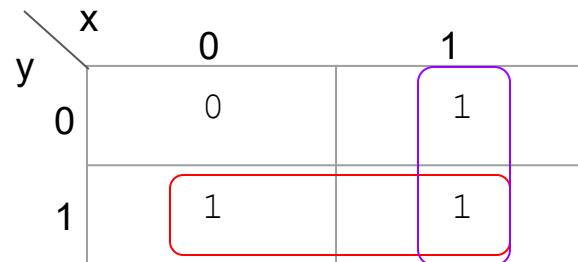
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Any rectangles of size 4? No
 - Any more rectangles of size 2? Yes
 - What is the expression for this rectangle? **y**


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

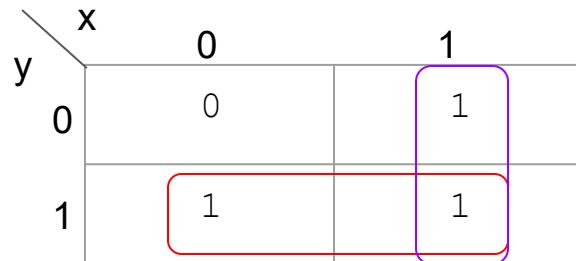
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Any rectangles of size 4? No
 - Any more rectangles of size 2? Yes
 - What if just added a 1x1 rectangle, instead?
 - This expression is $x'y$ (this is not an improvement)


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

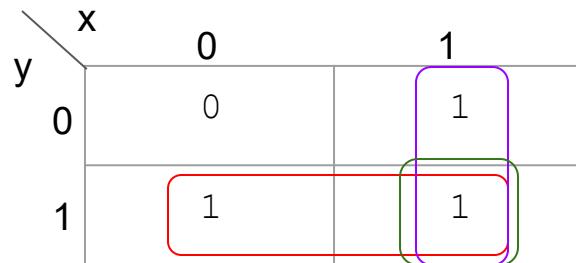
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Are we done?


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

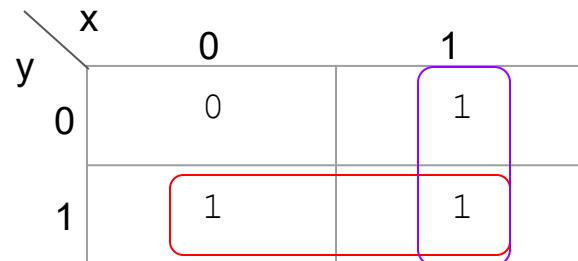
Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Are we done? Yes, because all 1s have been covered by rectangles


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

Karnaugh Maps (K-Maps)

- Another example: $g(a,b) = xy + x'y + xy'$
 - Are we done? Yes, because all 1s have been covered by rectangles
 - Note: We could add another rectangle [here](#), but that would be unnecessary since we have covered all 1s already


x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

Karnaugh Maps (K-Maps)

- Another example: $g(a, b) = xy + x'y + xy'$
 - Are we done? Yes, because all 1s have been covered by rectangles
 - Therefore, $g(a, b) = x + y$

x	y	$xy + x'y + xy'$
0	0	0
0	1	1
1	0	1
1	1	1

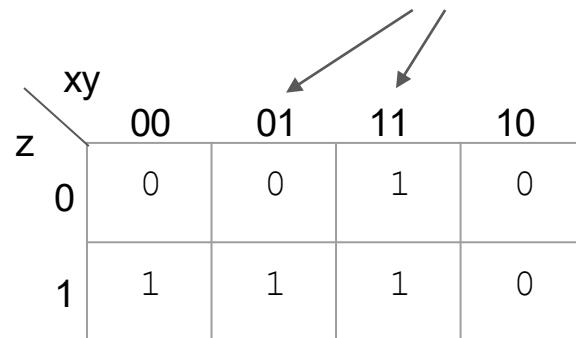
Karnaugh Maps - 3 Variable

CSCI 2050U - Computer Architecture

Karnaugh Maps (K-Maps)

- K-maps for 3 variables have a notational quirk:

x	y	z	$xy + x'z + yz$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1


xy	00	01	11	10
z	0	0	1	0
1	1	1	1	0

Karnaugh Maps (K-Maps)

- K-maps for 3 variables have a notational quirk:

x	y	z	$xy + x'z + yz$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

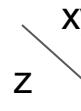
Note the unusual order, here:

Karnaugh Maps (K-Maps)

- Let's continue this example
 - Are there any size 8 rectangles? (remember, the rectangles must be of size 2^n)

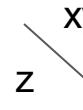
		00	01	11	10
		0	0	1	0
0	0	0	0	1	0
	1	1	1	1	0

Karnaugh Maps (K-Maps)


- Let's continue this example
 - Are there any size 8 rectangles? No
 - Are there any size 4 rectangles?

		00	01	11	10
		0	0	1	0
z	0	0	0	1	0
	1	1	1	1	0

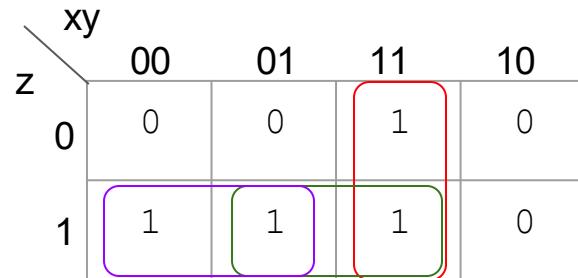
Karnaugh Maps (K-Maps)


- Let's continue this example
 - Are there any size 8 rectangles? No
 - Are there any size 4 rectangles? No

		00	01	11	10
		0	0	1	0
0	0	0	0	1	0
	1	1	1	1	0

Karnaugh Maps (K-Maps)

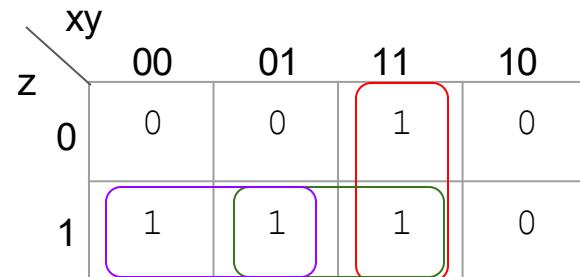
- Let's continue this example
 - Are there any size 8 rectangles? No
 - Are there any size 4 rectangles? No
 - Are there any size 2 rectangles?



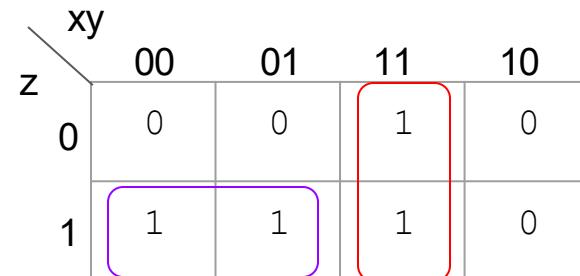
		00	01	11	10
		0	0	1	0
0	0	0	0	1	0
	1	1	1	1	0

Karnaugh Maps (K-Maps)

- Let's continue this example
 - Are there any size 8 rectangles? No
 - Are there any size 4 rectangles? No
 - Are there any size 2 rectangles? Yes


- xy
- $x' z$
- yz

Karnaugh Maps (K-Maps)


- Let's continue this example
 - Are there any size 8 rectangles? No
 - Are there any size 4 rectangles? No
 - Are there any size 2 rectangles? Yes

- xy
- $x' z$
- yz
- Right?

Karnaugh Maps (K-Maps)

- Let's continue this example
 - Are there any size 8 rectangles? No
 - Are there any size 4 rectangles? No
 - Are there any size 2 rectangles? Yes
 - xy
 - $x' z$
 - Right? No! The term yz is unnecessary
 - $h(x, y, z) = xy + x' z$

Karnaugh Maps - 4 Variable

CSCI 2050U - Computer Architecture

Karnaugh Maps (K-Maps)

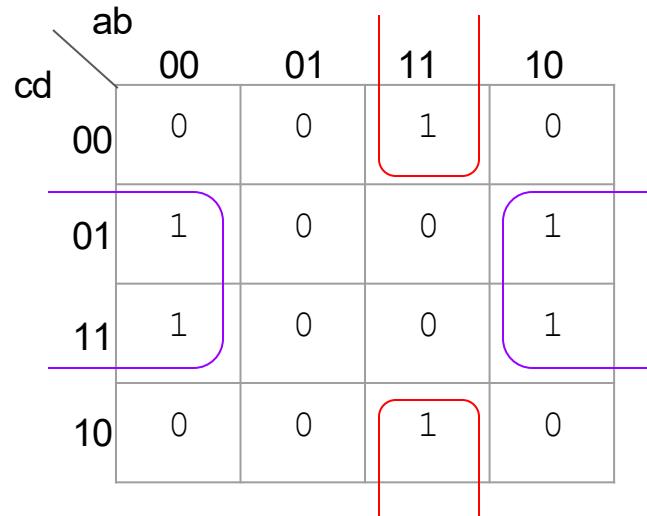
- 4-variable K-maps look like this:
 - $f(a,b,c,d) = abc'd' + abc'd + abcd + abcd' + a'bc'd + a'bcd + a'b'c'd + ab'c'd$
- *Note: We will not do K-maps for any expressions beyond 4 variables*

		ab			
		00	01	11	10
cd	00	0	0	1	0
	01	1	1	1	1
11	00	0	1	1	0
	10	0	0	1	0

Karnaugh Maps (K-Maps)

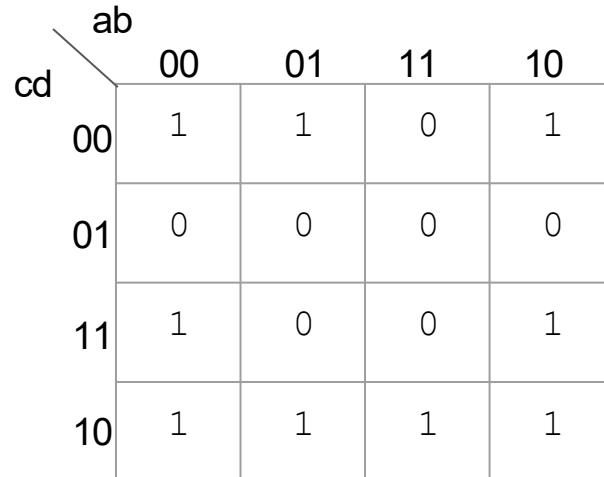
- Truth tables can sometimes have *don't care* conditions
- When this happens, we can treat it as either a 0 or a 1
 - Whichever is more convenient for finding our rectangles
- In this example, the ? should be a 1 since it enables this 1x4 rectangle

		ab	00	01	11	10	
		cd	00	0	0	1	0
		00	0	0	1	0	
		01	1	?	1	1	
		11	0	1	1	0	
		10	0	0	1	0	


Karnaugh Maps (K-Maps)

- K-maps have one other confusing aspect for students
 - The positions in this table are adjacent because the values next to each other (horizontally or vertically) differ by exactly one bit
 - Notice that the left and right columns for 3 or 4-variable k-maps (and the top and bottom rows) also differ by exactly one bit

		ab	00	01	11	10
		cd	00	0	1	0
		00	0	0	1	0
		01	1	0	0	1
		11	1	0	0	1
		10	0	0	1	0


Karnaugh Maps (K-Maps)

- K-maps have one other confusing aspect for students
 - As a consequence, these are valid rectangles:

Karnaugh Maps (K-Maps)

- K-maps have one other confusing aspect for students
 - As a consequence, these are valid rectangles:

A Karnaugh map (K-map) for a function of four variables (a, b, c, d). The variables are represented by the columns and rows of the map. The columns are labeled $a'b$, $a'b'$, $a'b$, and $a'b'$ (top to bottom). The rows are labeled $c'd$, $c'd'$, $c'd$, and $c'd'$ (left to right). The map consists of a 4x4 grid of cells, each containing a binary value (0 or 1). The values are: (00, 00) = 1, (00, 01) = 1, (00, 11) = 0, (00, 10) = 1; (01, 00) = 0, (01, 01) = 0, (01, 11) = 0, (01, 10) = 0; (11, 00) = 1, (11, 01) = 0, (11, 11) = 0, (11, 10) = 1; (10, 00) = 1, (10, 01) = 1, (10, 11) = 1, (10, 10) = 1.

		$a'b$	$a'b'$	$a'b$	$a'b'$
		00	01	11	10
$c'd$	00	1	1	0	1
	01	0	0	0	0
$c'd'$	11	1	0	0	1
	10	1	1	1	1

Karnaugh Maps (K-Maps)

- K-maps have one other confusing aspect for students
 - As a consequence, these are valid rectangles
 - ... and so is this:

		ab	00	01	11	10	
		cd	00	0	0	1	0
		00	0	0	0	1	
		01	1	0	0	1	
		11	1	0	0	1	
		10	0	0	1	0	

Wrap-Up

- Karnaugh maps
 - 2-variable
 - 3-variable
 - 4-variable

What is next?

- Finite state machines
- Oscillators (clock)
- Latches