

Digital Logic Optimization I

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

- Review: Logical equivalence
- Boolean algebra axioms
- Boolean algebraic simplification

Boolean Algebraic Simplification

- Boolean algebraic simplification is one way to optimize a circuit
 - Simplification involves using a set of *axioms*/logical equivalences to eliminate operators, or even variables from an expression
 - A smaller expression normally translates to a simpler/cheaper circuit
 - The resulting expression must be *logically equivalent*

Review: Logical Equivalence

- Two Boolean algebraic expressions are logically equivalent iff they have the same truth table
- Example:

a	b	$a' + b'$	$(ab)'$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Boolean Algebra Axioms

CSCI 2050U - Computer Architecture

Boolean Algebra - Axioms

- Some axioms are intuitive:

<i>AND Form</i>	<i>OR Form</i>	<i>Name</i>
$1x = x$	$0 + x = x$	Identity law
$0x = 0$	$1 + x = 1$	Null law
$xx = x$	$x + x = x$	Idempotent law
$xx' = 0$	$x + x' = 1$	Inverse law

Boolean Algebra - Axioms

- Some axioms are intuitive:

<i>AND Form</i>	<i>Name</i>
$x'' = x$	Double complement law

Boolean Algebra - Axioms

- Other axioms are familiar from (non-Boolean) algebra:

<i>AND Form</i>	<i>OR Form</i>	<i>Name</i>
$xy = yx$	$x + y = y + x$	Commutative law
$(xy)z = x(yz)$	$(x + y) + z = x + (y + z)$	Associative law
$x + yz = (x + y)(x + z)$	$x(y + z) = xy + xz$	Distributive law

Boolean Algebra - Axioms

- Others have been proved by Mathematicians:

<i>AND Form</i>	<i>OR Form</i>	<i>Name</i>
$x(x + y) = x$	$x + xy = x$	Absorption law
$(xy)' = x' + y'$	$(x + y)' = x'y'$	DeMorgan's law

Boolean Algebraic Simplification

CSCI 2050U - Computer Architecture

Boolean Algebraic Simplification

- Let's do an example:

$$f(x, y, z) = xy + x'z + yz$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned}f(x, y, z) &= xy + x'z + yz \\&= xy + x'z + yz1\end{aligned}\quad (\text{identity})$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned}f(x, y, z) &= xy + x'z + yz \\&= xy + x'z + yz1 && \text{(identity)} \\&= xy + x'z + yz(x + x') && \text{(inverse)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned}f(x, y, z) &= xy + x'z + yz \\&= xy + x'z + yz1 && \text{(identity)} \\&= xy + x'z + yz(x + x') && \text{(inverse)} \\&= xy + x'z + yzx + yzx' && \text{(distributive)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned}f(x, y, z) &= xy + x'z + yz \\&= xy + x'z + yz1 && \text{(identity)} \\&= xy + x'z + yz(x + x') && \text{(inverse)} \\&= xy + x'z + yzx + yzx' && \text{(distributive)} \\&= xy + x'z + x(yz) + x'(yz) && \text{(commutative x2)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned}f(x, y, z) &= xy + x'z + yz \\&= xy + x'z + yz1 && \text{(identity)} \\&= xy + x'z + yz(x + x') && \text{(inverse)} \\&= xy + x'z + yzx + yzx' && \text{(distributive)} \\&= xy + x'z + x(yz) + x'(yz) && \text{(commutative x2)} \\&= xy + x'z + (xy)z + (x'z)y && \text{(associative x2)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned} f(x, y, z) &= xy + x'z + yz \\ &= xy + x'z + yz1 && \text{(identity)} \\ &= xy + x'z + yz(x + x') && \text{(inverse)} \\ &= xy + x'z + yzx + yzx' && \text{(distributive)} \\ &= xy + x'z + x(yz) + x'(yz) && \text{(commutative x2)} \\ &= xy + x'z + (xy)z + (x'z)y && \text{(associative x2)} \\ &= xy + (xy)z + x'z + (x'z)y && \text{(commutative)} \end{aligned}$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned} f(x, y, z) &= xy + x'z + yz \\ &= xy + x'z + yz1 && \text{(identity)} \\ &= xy + x'z + yz(x + x') && \text{(inverse)} \\ &= xy + x'z + yzx + yzx' && \text{(distributive)} \\ &= xy + x'z + x(yz) + x'(yz) && \text{(commutative x2)} \\ &= xy + x'z + (xy)z + (x'z)y && \text{(associative x2)} \\ &= xy + (xy)z + x'z + (x'z)y && \text{(commutative)} \\ &= xy(1 + z) + x'z(1 + y) && \text{(distributive x2)} \end{aligned}$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned} f(x, y, z) &= xy + x'z + yz \\ &= xy + x'z + yz1 && \text{(identity)} \\ &= xy + x'z + yz(x + x') && \text{(inverse)} \\ &= xy + x'z + yzx + yzx' && \text{(distributive)} \\ &= xy + x'z + x(yz) + x'(yz) && \text{(commutative x2)} \\ &= xy + x'z + (xy)z + (x'z)y && \text{(associative x2)} \\ &= xy + (xy)z + x'z + (x'z)y && \text{(commutative)} \\ &= xy(1 + z) + x'z(1 + y) && \text{(distributive x2)} \\ &= xy1 + x'z1 && \text{(null x2)} \end{aligned}$$

Boolean Algebraic Simplification

- Let's do an example:

$$\begin{aligned} f(x, y, z) &= xy + x'z + yz \\ &= xy + x'z + yz1 && \text{(identity)} \\ &= xy + x'z + yz(x + x') && \text{(inverse)} \\ &= xy + x'z + yzx + yzx' && \text{(distributive)} \\ &= xy + x'z + x(yz) + x'(yz) && \text{(commutative x2)} \\ &= xy + x'z + (xy)z + (x'z)y && \text{(associative x2)} \\ &= xy + (xy)z + x'z + (x'z)y && \text{(commutative)} \\ &= xy(1 + z) + x'z(1 + y) && \text{(distributive x2)} \\ &= xy1 + x'z1 && \text{(null x2)} \\ &= xy + x'z && \text{(identity x2)} \end{aligned}$$

Boolean Algebraic Simplification

- Let's compare:

$$f(x, y, z) = xy + x'z + yz \quad (5 \text{ gates, } 10 \text{ transistors})$$

$$f(x, y, z) = xy + x'z \quad (4 \text{ gates, } 7 \text{ transistors})$$

Boolean Algebraic Simplification

- Let's do another example (our Neg expression from earlier):

$$f(x, y, z) = xy'z' + xy'z + xyz' + xyz$$

Boolean Algebraic Simplification

- Let's do another example (our Neg expression from earlier):

$$\begin{aligned}f(x, y, z) &= xy'z' + xy'z + xyz' + xyz \\&= xy'(z' + z) + xy(z' + z) \quad (\text{distributive } \times 2)\end{aligned}$$

Boolean Algebraic Simplification

- Let's do another example (our Neg expression from earlier):

$$\begin{aligned}f(x, y, z) &= xy' z' + xy' z + xyz' + xyz \\&= xy' (z' + z) + xy (z' + z) && \text{(distributive x 2)} \\&= xy' 1 + xy 1 && \text{(inverse x 2)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's do another example (our Neg expression from earlier):

$$\begin{aligned}f(x, y, z) &= xy'z' + xy'z + xyz' + xyz \\&= xy'(z' + z) + xy(z' + z) && \text{(distributive x 2)} \\&= xy'1 + xy1 && \text{(inverse x 2)} \\&= xy' + xy && \text{(identity x 2)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's do another example (our Neg expression from earlier):

$$\begin{aligned}f(x, y, z) &= xy'z' + xy'z + xyz' + xyz \\&= xy'(z' + z) + xy(z' + z) && \text{(distributive x 2)} \\&= xy'1 + xy1 && \text{(inverse x 2)} \\&= xy' + xy && \text{(identity x 2)} \\&= x(y' + y) && \text{(distributive)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's do another example (our Neg expression from earlier):

$$\begin{aligned}f(x, y, z) &= xy'z' + xy'z + xyz' + xyz \\&= xy'(z' + z) + xy(z' + z) && \text{(distributive x 2)} \\&= xy'1 + xy1 && \text{(inverse x 2)} \\&= xy' + xy && \text{(identity x 2)} \\&= x(y' + y) && \text{(distributive)} \\&= x1 && \text{(inverse)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's do another example (our Neg expression from earlier):

$$\begin{aligned}f(x, y, z) &= xy'z' + xy'z + xyz' + xyz \\&= xy'(z' + z) + xy(z' + z) && \text{(distributive x 2)} \\&= xy'1 + xy1 && \text{(inverse x 2)} \\&= xy' + xy && \text{(identity x 2)} \\&= x(y' + y) && \text{(distributive)} \\&= x1 && \text{(inverse)} \\&= x && \text{(identity)}\end{aligned}$$

Boolean Algebraic Simplification

- Let's compare:

$$f(x, y, z) = xy'z' + xy'z + xyz' + xyz \quad (7 \text{ gates, } 17 \text{ trans})$$

$$f(x, y, z) = x \quad (0 \text{ gates, } 0 \text{ trans})$$

Boolean Algebraic Simplification

- The main problem with Boolean algebraic simplification is that it is not obvious what to do next
 - We need an oracle to tell us which axiom to use next
 - This is not an algorithmic approach
 - We need something systematic, so we can never fail if we follow the steps
- Boolean algebraic simplification has been shown to be NP-complete in the general case
 - You'll learn more about this later, but in short, NP-complete is a class of problems where we aren't sure there is an efficient solution (in fact, we're pretty sure there isn't)

Wrap-Up

- Logical equivalence
- Boolean algebra axioms
- Boolean algebraic simplification
 - An NP-complete problem

What is next?

- Karnaugh maps