

Boolean Algebra and Circuit Design

CSCI 2050U - Computer Architecture

Randy J. Fortier
[@randy_fortier](https://twitter.com/randy_fortier)

Outline

- Equivalent forms:
 - Truth tables
 - Boolean algebraic expressions
 - Digital circuit diagrams

Truth Tables

CSCI 2050U - Computer Architecture

Truth Table

- A truth table is a table which includes an exhaustive list of all possible input values and the corresponding output values
 - We've seen truth tables for basic operations/gates in the previous section
- You can create a truth table for any function that always has the same output for each input combination

Truth Table

- Let's do an example: A truth table for adding one to an unsigned number

<i>a2</i>	<i>a1</i>	<i>a0</i>	<i>b2</i>	<i>b1</i>	<i>b0</i>
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Truth Table

- Let's do another example:
A truth table for performing
twos complement

<i>a2</i>	<i>a1</i>	<i>a0</i>	<i>b2</i>	<i>b1</i>	<i>b0</i>
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Boolean Algebra

CSCI 2050U - Computer Architecture

Boolean Algebra

- Boolean algebra is just like normal algebra:
 - Variables
 - Operators
 - Axioms - universal truths (e.g. $ab = ba$, $a(b + c) = ab + ac$)
- The key difference is that variables contain Boolean values
 - Their value is either True or False
 - The operators and axioms are also a bit different

Boolean Algebra

- Boolean algebraic operators:
 - NOT
 - AND
 - OR
 - NAND
 - NOR
 - XOR
- We've seen all of these (as gates) in the previous section

Boolean Algebraic Expressions

$$f(x,y,z) = xy + xz + yz$$

- Both x and y, OR
- Both x and z, OR
- Both y and z

x	y	z	xy	xz	yz	$f(x, y, z)$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	1
1	1	1	1	1	1	1

Boolean Algebraic Expressions

- Let's do an example:

$$f(x,y,z) = xy' + xz' + yz$$

x	y	z	xy'	xz'	yz	$f(x, y, z)$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Boolean Algebraic Expressions

- A Boolean algebraic expression is *satisfiable* iff there is at least one combination of variable values that makes the expression true

x	y	xy'
0	0	0
0	1	0
1	0	1
1	1	0

Boolean Algebraic Expressions

- A Boolean algebraic expression is *unsatisfiable* iff there is no combination of variable values that makes the expression true

x	y	$(x+y')x'y$
0	0	0
0	1	0
1	0	0
1	1	0

Boolean Algebraic Expressions

- A Boolean algebraic expression is *universally valid* iff the expression true for every combination of variable values

x	y	$x'y + x'y' + x$
0	0	1
0	1	1
1	0	1
1	1	1

Boolean Algebraic Expressions

- Two Boolean algebraic expressions are *logically equivalent* iff for each combination of variable values, they produce the same output

x	y	$x'y'$	$(x + y)'$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Sum of Products (SOP) Form

- For the output b in the truth table given, what input values make it true?

a_2	a_1	a_0	b
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Sum of Products (SOP) Form

- For the output b in the truth table given, what input values make it true?
 - Can we come up with a Boolean algebraic expression for this row?

a_2	a_1	a_0	b
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Sum of Products (SOP) Form

- For the output b in the truth table given, what input values make it true?
 - Can we come up with a Boolean algebraic expression for this row?
 - $a_2 = 0, a_1 = 0, a_0 = 1$
 - $a_2' a_1' a_0$

$a_2' a_1' a_0$

a_2	a_1	a_0	b
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Sum of Products (SOP) Form

- For the output b in the truth table given, what input values make it true?
 - Extending this to all of the true rows...

a_2	a_1	a_0	b
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Diagram illustrating the mapping of minterms to rows in the truth table:

- $a_2' a_1' a_0$ (blue) points to the row where $a_2 = 0, a_1 = 0, a_0 = 1, b = 1$.
- $a_2' a_1 a_0'$ (green) points to the row where $a_2 = 0, a_1 = 1, a_0 = 0, b = 1$.
- $a_2 a_1' a_0$ (red) points to the row where $a_2 = 1, a_1 = 0, a_0 = 1, b = 1$.
- $a_2 a_1 a_0'$ (purple) points to the row where $a_2 = 1, a_1 = 1, a_0 = 0, b = 1$.

Sum of Products (SOP) Form

- For the output b in the truth table given, what input values make it true?
 - $b = a_2' a_1' a_0 + a_2' a_1 a_0' + a_2 a_1' a_0 + a_2 a_1 a_0'$
 - This is called sum of products (SOP) form
 - It is a sum (+) of products ($a_2 a_1' a_0$)
 - Also called Disjunctive Normal Form (DNF)

a_2	a_1	a_0	b
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Sum of Products (SOP) Form

- Sum of products is very useful, due to:
 - How easily it can be converted into a circuit diagram
 - How easily the SOP form can be deduced from a truth table
 - A truth table for any expression can be straightforwardly created
- It is not very efficient, however
 - It may not be the form that uses the fewest operators/gates
 - We'll discuss optimization later

Digital Circuits

CSCI 2050U - Computer Architecture

Circuit Diagrams

- Let's make a circuit that takes a 3-bit two's complement number, and outputs whether or not the number is negative:
 - We can make the truth table by simply looking at the numbers, and determining the correct output

<i>a2</i>	<i>a1</i>	<i>a0</i>	<i>Neg</i>
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Circuit Diagrams

- Recall that the leftmost bit is 1 if the number is negative
 - This makes truth table quite easy to create

<i>a2</i>	<i>a1</i>	<i>a0</i>	<i>Neg</i>
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Circuit Diagrams

- Now, let's determine the SOP for Neg:
 - $\text{Neg} = a_2a_1'a_0' + a_2a_1'a_0 + a_2a_1a_0' + a_2a_1a_0$

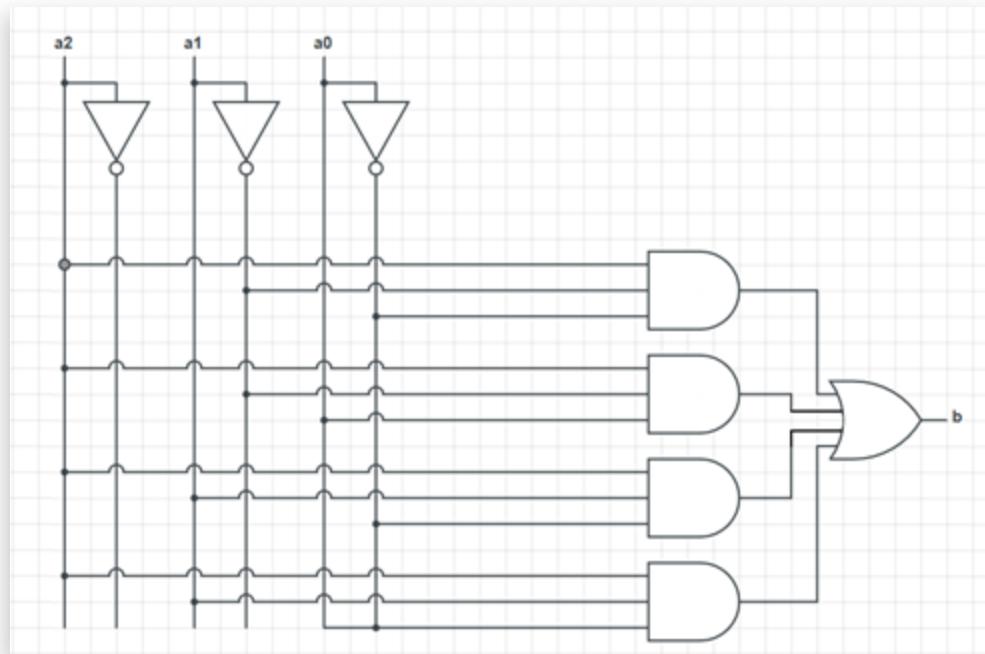
a_2	a_1	a_0	Neg
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Circuit Diagrams

- Finally, let's create the circuit:
 - $\text{Neg} = a_2a_1'a_0' + a_2a_1'a_0 + a_2a_1a_0' + a_2a_1a_0$

Circuit Diagrams

- Finally, let's create the circuit:
 - $\text{Neg} = a_2a_1'a_0' + a_2a_1'a_0 + a_2a_1a_0' + a_2a_1a_0$



Circuit Diagrams

- Let's make a circuit that takes a 2-bit input and generates the 2-bit output that is the input plus one

<i>a1</i>	<i>a0</i>	<i>b1</i>	<i>b0</i>
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

$$\begin{aligned}b1 &= \\b0 &= \end{aligned}$$

Circuit Diagrams

- Let's make a circuit that takes a 2-bit input and generates the 2-bit output that is the input plus one

<i>a1</i>	<i>a0</i>	<i>b1</i>	<i>b0</i>
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

$$\begin{aligned}b_1 &= a_1' a_0 + a_1 a_0' \\&= a_1 \text{ XOR } a_0\end{aligned}$$

$$b_0 = a_1' a_0' + a_1 a_0'$$

Arithmetic Exercise

- Create a signed addition overflow recognizer

a7	b7	c7	v
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

V =

Wrap-Up

- Equivalent forms:
 - Truth tables
 - Boolean algebraic expressions
 - Digital circuit diagrams

What is next?

- Boolean algebra axioms
- Boolean algebraic simplification