
Binary Arithmetic II

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

● Signed number representations

● Binary subtraction

● Overflow

Signed Binary Representations

CSCI 2050U - Computer Architecture

Signed Numbers

● Unsigned numbers are relatively simple, since we can just use the basic

decimal to binary conversion process discussed in the last lecture

● Signed numbers could be implemented three ways:
○ Signed bit representation

○ 1s complement

○ 2s complement

Signed Bit Representation

● Use one of the bits of the binary representation to represent the sign
○ 0 - zero or positive value

○ 1 - negative value

● The rest of the number would represent the magnitude (value)

● e.g. 0110 1100
○ 0 - this number is either zero or positive (non-negative)

○ 110 1100 - use normal binary to decimal conversion (108)

● Advantage: Easy to explain to CS students

● Disadvantage: No arithmetic works

Signed Bit Representation: Arithmetic

● How do we add numbers represented in this way?

11 1

1001 0101 -21

+ 0001 1100 +28

1011 0001 -49 (incorrect)

1s Complement Representation

● Positive numbers have a leftmost bit 0 (just like in sign bit representation),

and the rest of the number is normal binary

● Negative numbers are the positive number in binary, but with all bits flipped

(complemented)

● e.g. 0110 1100 (positive, 108)
○ 0 - this number is either zero or positive (non-negative)

○ 110 1100 - use normal binary to decimal conversion (108)

● e.g. 1110 1100 (negative, -19)
○ 1 - this number is negative

○ Flip the remaining bits: 110 1100 → 001 0011 (which is 19 in decimal)

○ Therefore, this number is -19

1s Complement Representation

● Advantage: None

● Disadvantage: Arithmetic almost works

1s Complement Representation: Arithmetic

● How do we add numbers represented in this way?

Positive:

1111

1110 1010 0001 0101 -21

+ 0001 1100 +28

0000 0110 6 (incorrect, but almost)

2s Complement Representation

● Two-step process to negate a number:
○ Perform the 1s complement

○ Add 1 to the result

● Since this is complicated, to find out the value (magnitude) of a negative

number, use these two steps (above) to make it positive to see its magnitude

● The magnitude of the original (negative) number will be the same

2s Complement Representation

● e.g. 0110 1100 (positive, 108)
○ 0 - this number is either zero or positive (non-negative)

○ 110 1100 - use normal binary to decimal conversion (108)

● e.g. 1110 1100 (negative, -20)
○ 1 - this number is negative

○ 1s complement: 1110 1100 → 0001 0011

○ Add 1 to the result: 0001 0011 → 0001 0100 (20)

○ Therefore, this number is -20

2s Complement Representation

● Advantage: Arithmetic works!

● Disadvantage: A bit tougher for CS students to learn

● This process produces identical results:
○ Start from the rightmost (least significant) digit

○ Copy all of the zeroes

○ Copy the first one

○ Invert all the remaining bits

0110 1100 (+108) 1110 0101 (-27)

1001 0100 (-108) 0001 1011 (+27)

Alternative Twos Complement Technique

2s Complement Representation: Arithmetic

● How do we add numbers represented in this way?

Complement: Add one:

1111

1110 1011 0001 0100 0001 0101 -21

+ 0001 1100 +28

0000 0111 7 (correct)

2s Complement Representation

● Simple way to remember:
○ The left-most bit still represents the same amount as before, but negative

○ For an 8-bit number, instead of 128, the left-most bit represents -128

2s Complement Operation

● The operation that we just learned can be used to negate a number:

1. Invert (complement) all of the bits

2. Add 1 to the result

● Example (positive to negative):

○ 0110 1000 (104)

○ 1001 0111 (invert all of the bits)

○ 1001 1000 (add 1, -104)

2s Complement Operation

● The operation that we just learned can be used to negate a number:

1. Invert (complement) all of the bits

2. Add 1 to the result

● Example (negative to positive):

○ 1001 1000 (-104)

○ 0110 0111 (invert all of the bits)

○ 0110 1000 (add 1, 104)

Binary Subtraction

CSCI 2050U - Computer Architecture

Binary Subtraction

● Half subtractor (HS) - subtracts two bits

● Full subtractor (FS) subtracts two bits with a possible borrow bit

● One way to design a subtraction circuit:
○ Design half subtractors and full subtractors

○ Combine them to subtract multi-bit numbers

● In practice, we don't have to do it this way

Binary Subtraction

● In decimal, subtracting A-B is the same as adding A+(-B)
○ The same is true in binary

● So, subtracting A-B could be done as follows:
○ Negate B (i.e. apply the twos complement operation)

○ Add A and -B

Binary Subtraction - Implementation

● How to negate B?

● Recall that to negate B:
1. Complement all of the bits

2. Add one

● How to complement bits in a digital circuit?
1. XOR with 0: no effect on the bit value

2. XOR with 1: the bit value is complemented

■ We could XOR each bit with 1

Adder-Subtractor Circuit

Implementing Circuits

● If you don’t happen to have your own multi-billion dollar foundry, you can still

build your own circuits using TTL chips (e.g. TI 7426)

Overflow

CSCI 2050U - Computer Architecture

• Overflow means that the result of an arithmetic operation cannot be
correctly represented in the number of bits available
– For addition, this means that we’ve exceeded the bounds of our representation

• With unsigned addition, overflow happens when we go beyond the limits
of our representation

– This is easily recognized by a carry out

1 111 111

1011 0101

(181)

+ 0101 0111 (87)

0000 1100 (12)

Overflow - Unsigned Integers

• With signed integers, a carry out doesn’t indicate overflow
– Can adding one positive and one negative signed integers ever result in overflow?

Overflow - Signed Integers

• With signed integers, a carry out doesn’t indicate overflow
– Can adding one positive and one negative signed integers ever result in overflow? No

– Can adding two negative (or two positive) signed integers ever result in overflow?

Overflow - Signed Integers

• With signed integers, a carry out doesn’t indicate overflow
– Can adding one positive and one negative signed integers ever result in overflow? No

– Can adding two negative (or two positive) signed integers ever result in overflow? Yes

■ Adding two negative signed integers should produce a negative result

■ Adding two positive signed integers should produce a positive result

Overflow - Signed Integers

• Detecting overflow when adding signed integers:
– Does the sign of the result match the sign of both of the input numbers?

■ No → overflow

Overflow - Signed Integers

1 111 1

1011 0101

(-75)

+ 1101 1001 (-39)

1000 1110 (-114)

1 111

1011 0101

(-75)

+ 1000 0011 (-125)

0011 1000 (+56)

Wrap-up

● Signed number representations
○ Sign bit representation

○ 1s complement

○ 2s complement

● Binary subtraction

● Overflow
○ Unsigned overflow

○ Signed overflow

What is next?

● Shift and rotation

● Booth's algorithm

	Slide 1: Binary Arithmetic II
	Slide 2: Outline
	Slide 3: Signed Binary Representations
	Slide 4: Signed Numbers
	Slide 5: Signed Bit Representation
	Slide 6: Signed Bit Representation: Arithmetic
	Slide 7: 1s Complement Representation
	Slide 8: 1s Complement Representation
	Slide 9: 1s Complement Representation: Arithmetic
	Slide 10: 2s Complement Representation
	Slide 11: 2s Complement Representation
	Slide 12: 2s Complement Representation
	Slide 13: Alternative Twos Complement Technique
	Slide 14: 2s Complement Representation: Arithmetic
	Slide 15: 2s Complement Representation
	Slide 16: 2s Complement Operation
	Slide 17: 2s Complement Operation
	Slide 18: Binary Subtraction
	Slide 19: Binary Subtraction
	Slide 20: Binary Subtraction
	Slide 21: Binary Subtraction - Implementation
	Slide 22: Adder-Subtractor Circuit
	Slide 23: Implementing Circuits
	Slide 24: Overflow
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Wrap-up
	Slide 31: What is next?

