

Binary Arithmetic II

CSCI 2050U - Computer Architecture

Randy J. Fortier
[@randy_fortier](https://twitter.com/randy_fortier)

Outline

- Signed number representations
- Binary subtraction
- Overflow

Signed Binary Representations

CSCI 2050U - Computer Architecture

Signed Numbers

- Unsigned numbers are relatively simple, since we can just use the basic decimal to binary conversion process discussed in the last lecture
- Signed numbers could be implemented three ways:
 - Signed bit representation
 - 1s complement
 - 2s complement

Signed Bit Representation

- Use one of the bits of the binary representation to represent the sign
 - 0 - zero or positive value
 - 1 - negative value
- The rest of the number would represent the magnitude (value)
- e.g. **0**110 1100
 - **0** - this number is either zero or positive (non-negative)
 - 110 1100 - use normal binary to decimal conversion (108)
- Advantage: Easy to explain to CS students
- Disadvantage: No arithmetic works

Signed Bit Representation: Arithmetic

- How do we add numbers represented in this way?

$$\begin{array}{r} 11 \ 1 \\ 1001 \ 0101 \quad -21 \\ + 0001 \ 1100 \quad +28 \\ \hline 1011 \ 0001 \quad -49 \text{ (incorrect)} \end{array}$$

1s Complement Representation

- Positive numbers have a leftmost bit 0 (just like in sign bit representation), and the rest of the number is normal binary
- Negative numbers are the positive number in binary, but with all bits flipped (complemented)
- e.g. 0110 1100 (positive, 108)
 - 0 - this number is either zero or positive (non-negative)
 - 110 1100 - use normal binary to decimal conversion (108)
- e.g. 1110 1100 (negative, -19)
 - 1 - this number is negative
 - Flip the remaining bits: 110 1100 → 001 0011 (which is 19 in decimal)
 - Therefore, this number is -19

1s Complement Representation

- Advantage: None
- Disadvantage: Arithmetic *almost* works

1s Complement Representation: Arithmetic

- How do we add numbers represented in this way?

Positive:

$$\begin{array}{r} 1111 \\ 1110 \ 1010 \quad 0001 \ 0101 \quad -21 \\ + \underline{0001 \ 1100} \quad \quad \underline{+28} \\ \hline 0000 \ 0110 \quad \quad \quad 6 \text{ (incorrect, but } \underline{\text{almost}}) \end{array}$$

2s Complement Representation

- Two-step process to negate a number:
 - Perform the 1s complement
 - Add 1 to the result
- Since this is complicated, to find out the value (magnitude) of a negative number, use these two steps (above) to make it positive to see its magnitude
- The magnitude of the original (negative) number will be the same

2s Complement Representation

- e.g. **0**110 1100 (positive, 108)
 - **0** - this number is either zero or positive (non-negative)
 - 110 1100 - use normal binary to decimal conversion (108)
- e.g. **1**110 1100 (negative, -20)
 - **1** - this number is negative
 - 1s complement: 1110 1100 → 0001 0011
 - Add 1 to the result: 0001 0011 → 0001 0100 (20)
 - Therefore, this number is -20

2s Complement Representation

- Advantage: Arithmetic works!
- Disadvantage: A bit tougher for CS students to learn

Alternative Twos Complement Technique

- This process produces identical results:
 - Start from the rightmost (least significant) digit
 - Copy all of the zeroes
 - Copy the first one
 - Invert all the remaining bits

0110 1100 (+108)

1001 0100 (-108)

1110 0101 (-27)

0001 1011 (+27)

2s Complement Representation: Arithmetic

- How do we add numbers represented in this way?

	Complement:	Add one:	
	1111		
	1110 1011	0001 0100	0001 0101
+	<u>0001 1100</u>		-21
	0000 0111		<u>+28</u>
			7 (correct)

2s Complement Representation

- Simple way to remember:
 - The left-most bit still represents the same amount as before, but negative
 - For an 8-bit number, instead of 128, the left-most bit represents -128

2s Complement Operation

- The operation that we just learned can be used to negate a number:
 1. Invert (complement) all of the bits
 2. Add 1 to the result
- Example (positive to negative):
 - 0110 1000 (104)
 - 1001 0111 (invert all of the bits)
 - 1001 1000 (add 1, -104)

2s Complement Operation

- The operation that we just learned can be used to negate a number:
 1. Invert (complement) all of the bits
 2. Add 1 to the result
- Example (negative to positive):
 - 1001 1000 (-104)
 - 0110 0111 (invert all of the bits)
 - 0110 1000 (add 1, 104)

Binary Subtraction

CSCI 2050U - Computer Architecture

Binary Subtraction

- Half subtractor (HS) - subtracts two bits
- Full subtractor (FS) subtracts two bits with a possible borrow bit
- One way to design a subtraction circuit:
 - Design half subtractors and full subtractors
 - Combine them to subtract multi-bit numbers
- In practice, we don't have to do it this way

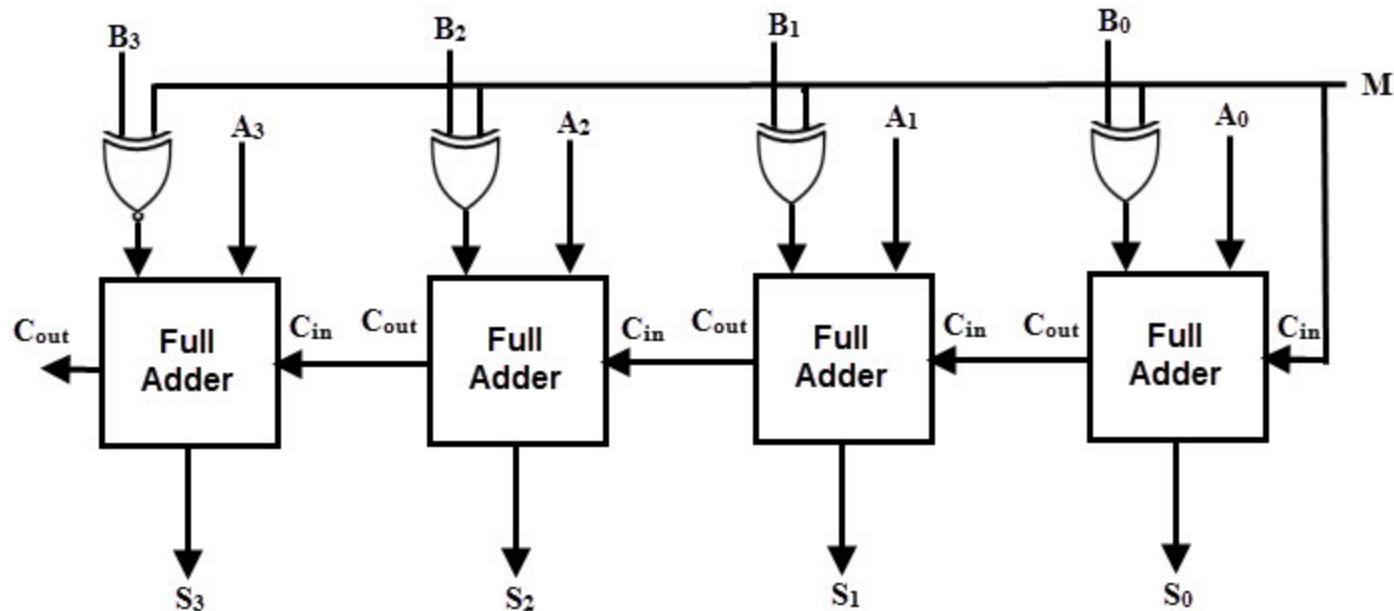
Binary Subtraction

- In decimal, subtracting $A-B$ is the same as adding $A+(-B)$
 - The same is true in binary
- So, subtracting $A-B$ could be done as follows:
 - Negate B (i.e. apply the twos complement operation)
 - Add A and $-B$

Binary Subtraction - Implementation

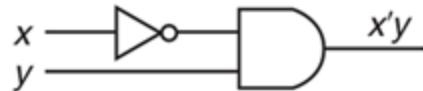
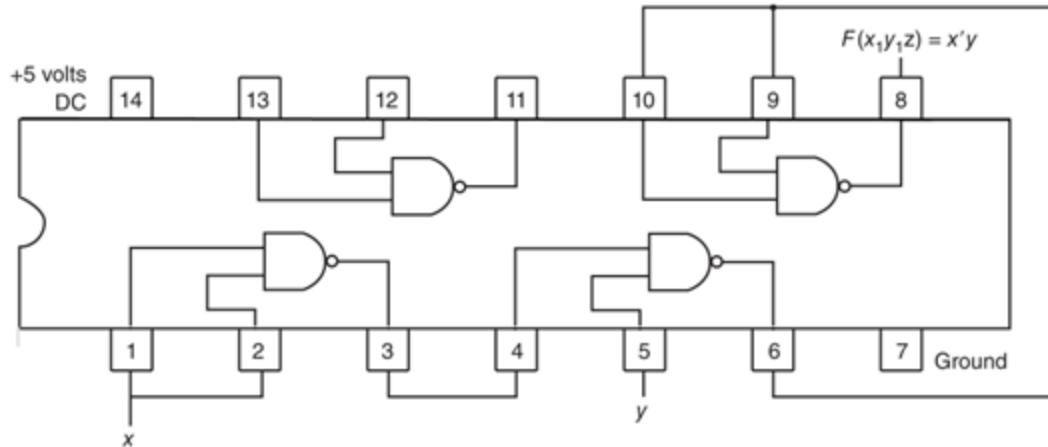
- How to negate B?
- Recall that to negate B:
 1. Complement all of the bits
 2. Add one
- How to complement bits in a digital circuit?
 1. XOR with 0: no effect on the bit value
 2. XOR with 1: the bit value is complemented
 - We could XOR each bit with 1

Adder-Subtractor Circuit



Implementing Circuits

- If you don't happen to have your own multi-billion dollar foundry, you can still build your own circuits using TTL chips (e.g. TI 7426)



Overflow

CSCI 2050U - Computer Architecture

Overflow - Unsigned Integers

- Overflow means that the result of an arithmetic operation cannot be correctly represented in the number of bits available
 - For addition, this means that we've exceeded the bounds of our representation
- With unsigned addition, overflow happens when we go beyond the limits of our representation
 - This is easily recognized by a *carry out*

$$\begin{array}{r} 1 \ 111 \ 111 \\ 1011 \ 0101 \\ (181) \\ + \ 0101 \ 0111 \\ \hline 0000 \ 1100 \end{array} \quad \begin{array}{r} (87) \\ (12) \end{array}$$

Overflow - Signed Integers

- With signed integers, a carry out doesn't indicate overflow
 - Can adding one positive and one negative signed integers ever result in overflow?

Overflow - Signed Integers

- With signed integers, a carry out doesn't indicate overflow
 - Can adding one positive and one negative signed integers ever result in overflow? No
 - Can adding two negative (or two positive) signed integers ever result in overflow?

Overflow - Signed Integers

- With signed integers, a carry out doesn't indicate overflow
 - Can adding one positive and one negative signed integers ever result in overflow? No
 - Can adding two negative (or two positive) signed integers ever result in overflow? Yes
 - Adding two negative signed integers should produce a negative result
 - Adding two positive signed integers should produce a positive result

Overflow - Signed Integers

- Detecting overflow when adding signed integers:
 - Does the sign of the result match the sign of both of the input numbers?
 - No → overflow

$$\begin{array}{r} 1 \ 111 \quad 1 \\ 1011 \ 0101 \\ (-75) \\ + 1101 \ 1001 \quad (-39) \\ \hline 1000 \ 1110 \quad (-114) \end{array}$$

$$\begin{array}{r} 1 \ 111 \quad 1 \\ 1011 \ 0101 \\ (-75) \\ + 1000 \ 0011 \quad (-125) \\ \hline 0011 \ 1000 \quad (+56) \end{array}$$

Wrap-up

- Signed number representations
 - Sign bit representation
 - 1s complement
 - 2s complement
- Binary subtraction
- Overflow
 - Unsigned overflow
 - Signed overflow

What is next?

- Shift and rotation
- Booth's algorithm