

# Basic Electronics

CSCI 2050U - Computer Architecture

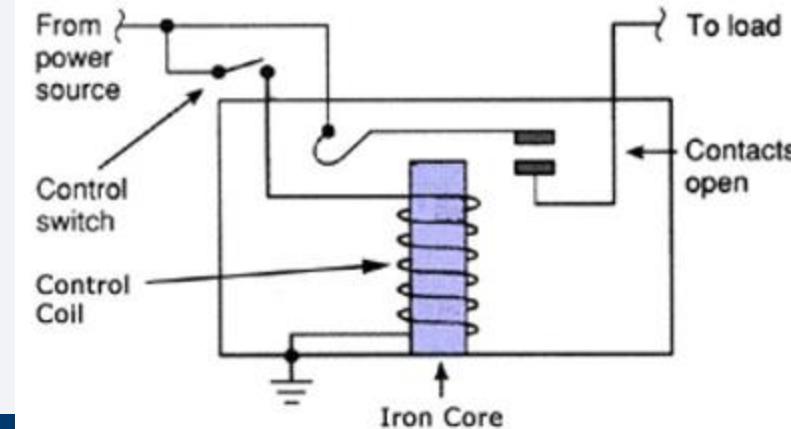
Randy J. Fortier  
[@randy\\_fortier](https://twitter.com/randy_fortier)

# Lecture Outline

- Basic physics and electronics components
- Digital logic gates

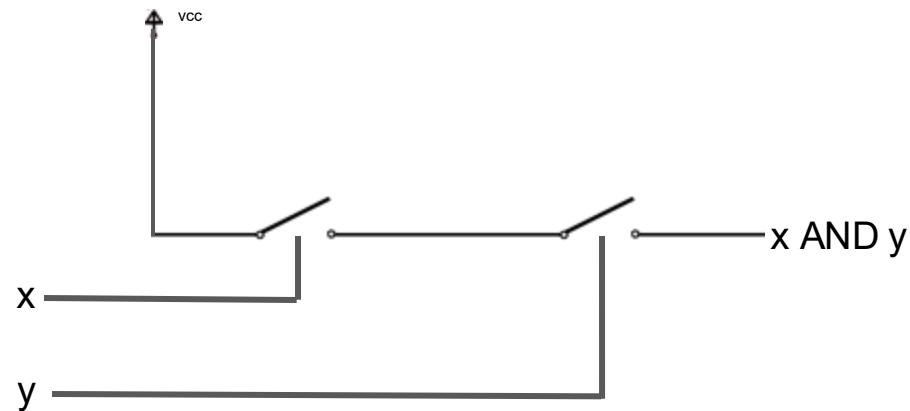
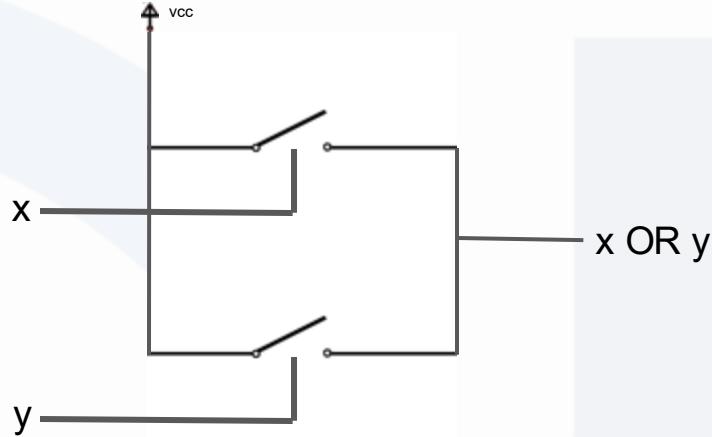
# Background

CSCI 2050U - Computer Architecture


# Mechanical Computers

- Charles Babbage (1791-1871)
  - Difference engine (~1822)
    - Calculating astronomical tables
  - Analytical engine (never completed)
    - Programmable



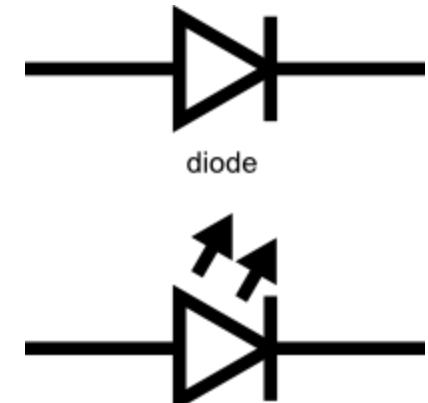


# Electromechanical Computers

- A relay is an electromechanical device which acts like a switch
  - Conceived by telegraph operators to relay (forward) a signal
  - The incoming data creates a new signal with the same output



# Electromechanical Computers

- Imagine two relays, configured as in these diagrams:



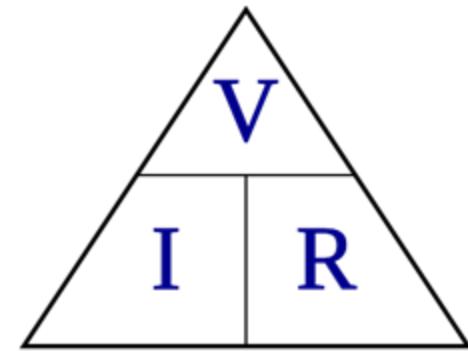

# Electromechanical Computers

- In theory, we could build a computer out of relays
  - It would be huge
  - It would use a lot of power
  - It would be expensive
  - It would break down a lot
- Computers like these were created by Harvard, Bell
  - 1940s - 1950s
- Alan Turing used a computer like this to crack the Enigma code in WWII

# Electronics - Diodes and LEDs

- Some basic electronics terminology:
  - Diode: A device that forces flow in one direction
    - Anode: Electrons flow out (+)
    - Cathode: Electrons flow in (-)
  - Light Emitting Diode (LED): A diode that produces light




# Electronics - Resistors

- Some basic electronics terminology:
  - Resistance: The degree to which a material resists electron flow
    - Analogy: A narrow pipe
    - Measured in Ohms ( $\Omega$ )
    - Conductor: A material with low resistance (e.g. gold, copper)
    - Insulator: A material with high resistance (e.g. glass, rubber)
    - Semiconductor: A material whose resistance can be modified (called doping)
      - e.g. silicon, germanium



# Ohm's Law

- Voltage
  - A measure of pressure
  - Unit: volts
  - Can be negative or positive (direction of pressure)
  - Handy for encoding (discussed later)
- Current
  - A measure of flow
  - Unit: Amperes
- Wattage
  - A measure of work
  - Unit: watts



*Ohm's Law:*

$$V = IR$$

$$I = V/R$$

$$R = V/I$$

# Electrical Computers - Vacuum Tubes

- Alternatives to relays:
  - Vacuum tubes
    - Low pressure tubes with anode and a heated cathode
    - Photoelectric effect causes electrons to flow only in one direction
    - ENIAC, Colossus
    - Expensive, energy waste, often fail
  - Transistors



# Electrical Computers - Transistors

- Alternatives to relays:
  - Vacuum tubes
  - Transistors
    - Devices made in silicon
    - Developed in the 1950s and 1960s
    - Popularized in the 1970s
    - Energy efficient, small, rarely break down
    - Primary component of very large scale integration (VLSI) circuits



# Electrical Computers

- Chemistry review:
  - Atoms can share electrons in their outermost shells (co-valent bonds)
  - Pure silicon crystal has 4/8 electrons in its outer shell, so it can bond with 4 other silicon atoms

# Electrical Computers

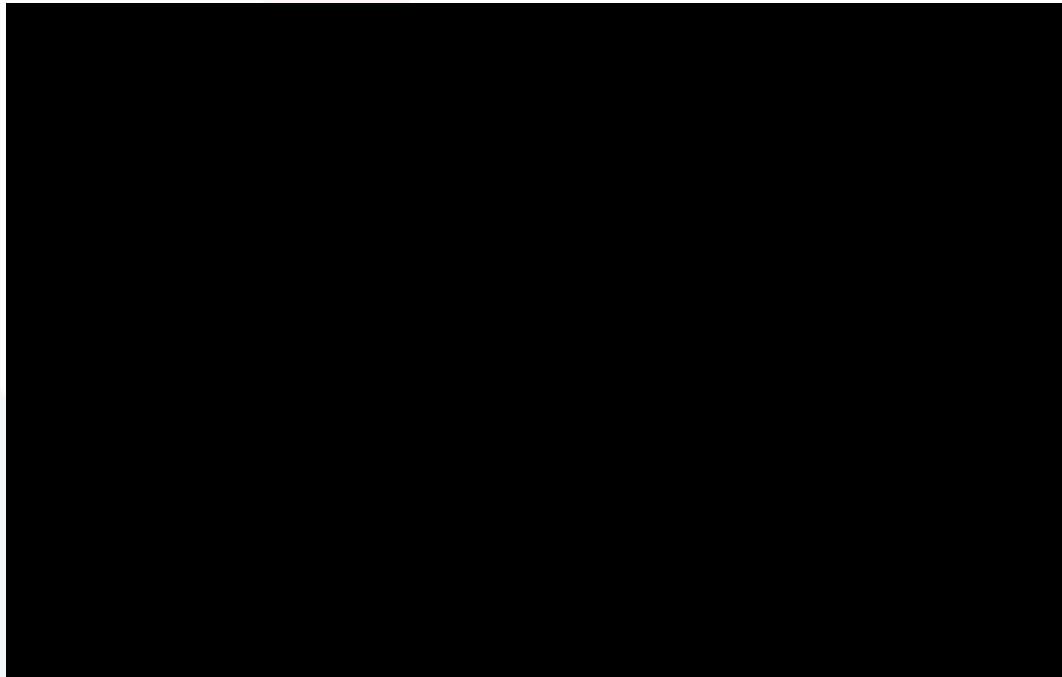
- Chemistry review:
  - Atoms can share electrons in their outermost shells (co-valent bonds)
  - Pure silicon crystal has 4/8 electrons in its outer shell, so it can bond with 4 other silicon atoms
    - Silicon can be 'doped'
      - Phosphorus - has 5 electrons in its outer shell (one extra electron; N-type)

A standard periodic table of elements is displayed, showing the elements arranged in groups and periods. The table includes element symbols, atomic numbers, and some physical properties. The elements are color-coded into groups: alkali metals (Group 1), alkali earth metals (Group 2), transition metals (Groups 3-12), post-transition metals (Groups 13-18), and noble gases (Group 18). The table also includes the lanthanide and actinide series.

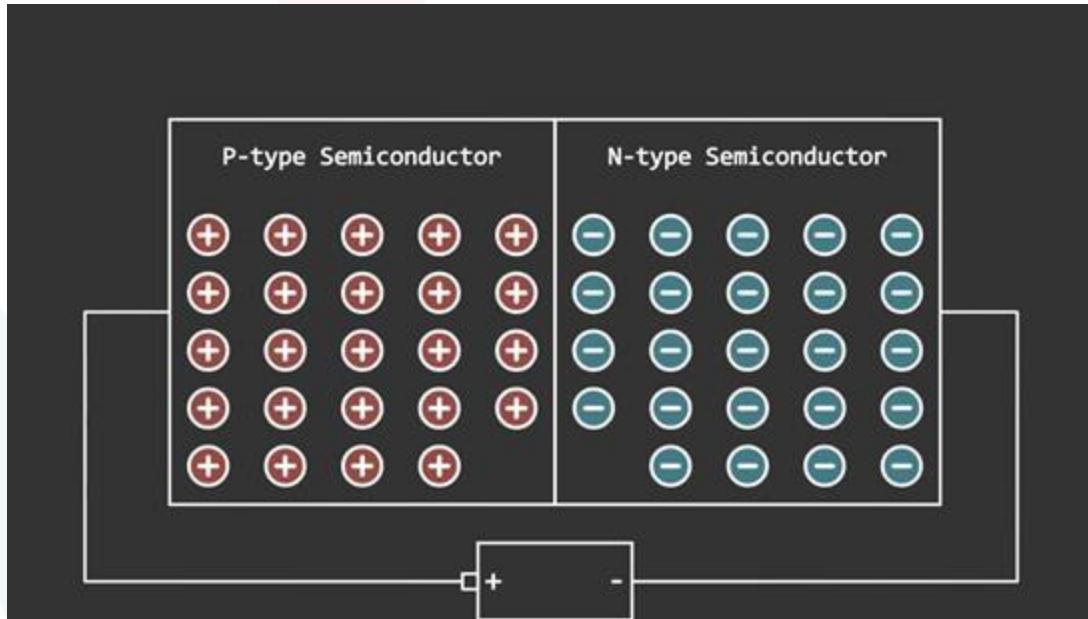
| Group | 1  | 2  | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|-------|----|----|----|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
| 1     | H  |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    | He |
| 2     | Li | Be |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    | Ne |
| 3     | Na | Mg |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    | Ar |
| 4     | K  | Ca | Sc |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 5     | Rb | Sr | Y  |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 6     | Cs | Ba | La |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 7     | Fr | Ra | Ac |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 8     |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 9     |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 10    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 11    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 12    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 13    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 14    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 15    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 16    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 17    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| 18    |    |    |    |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |


# Electrical Computers

- Chemistry review:
  - Atoms can share electrons in their outermost shells (co-valent bonds)
  - Pure silicon crystal has 4/8 electrons in its outer shell, so it can bond with 4 other silicon atoms
    - Silicon can be 'doped'
      - Phosphorus - has 5 electrons in its outer shell (one extra electron; N-type)
      - Boron - has 3 electrons in its outer shell (one extra hole; P-type)


# Electrical Computers

- Diodes
  - A component that restricts the flow of electrons to a single direction
- How do they work?
  - Place an N-type semiconductor adjacent to a P-type semiconductor
  - The extra electrons in the N-type semiconductor occupy the holes in the P-type semiconductor for a small space near the junction (depletion zone)

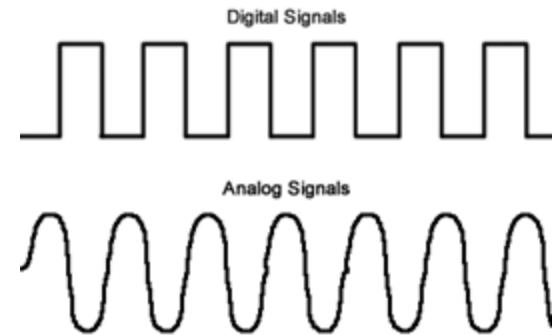

# Electrical Computers - Diodes



# Electrical Computers - Diodes



# Electrical Computers - Diodes

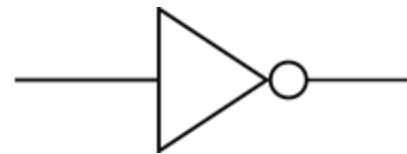



# Electrical Computers - Transistors



# Analog vs. Digital

- Digital
  - Represent only discrete values
  - e.g. 0-10% of the population voted → +0.5v
- Analog
  - Represent any continuous value
  - e.g. 71.3% of the population voted → +0.713v

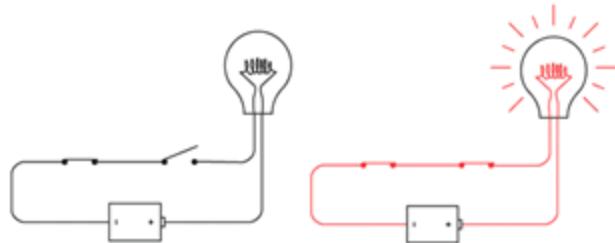



# Digital Logic Gates

CSCI 2050U - Computer Architecture

# Basic Circuit Diagrams

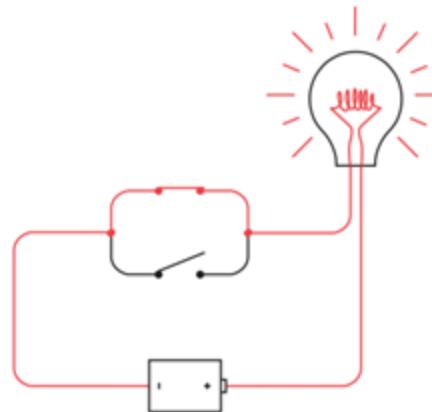
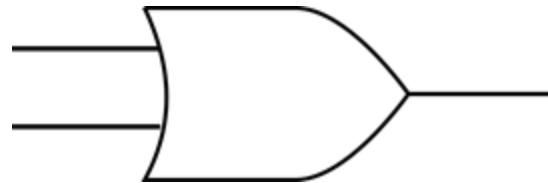
- Inverter:




| $A$ | $NOT\ A\ (A')$ |
|-----|----------------|
| 0   | 1              |
| 1   | 0              |

# Basic Circuit Diagrams

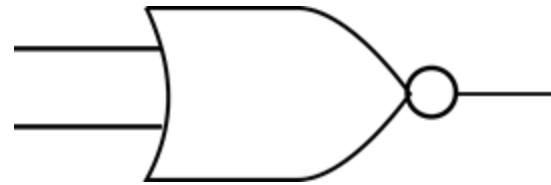
- AND:



| <b><i>A</i></b> | <b><i>B</i></b> | <b><i>A AND B (AB)</i></b> |
|-----------------|-----------------|----------------------------|
| 0               | 0               | 0                          |
| 0               | 1               | 0                          |
| 1               | 0               | 0                          |
| 1               | 1               | 1                          |



# Basic Circuit Diagrams

- OR:


| <b><i>A</i></b> | <b><i>B</i></b> | <b><i>A OR B (A+B)</i></b> |
|-----------------|-----------------|----------------------------|
| 0               | 0               | 0                          |
| 0               | 1               | 1                          |
| 1               | 0               | 1                          |
| 1               | 1               | 1                          |



# Basic Circuit Diagrams

- NOR:

| <b><i>A</i></b> | <b><i>B</i></b> | <b><i>A NOR B</i></b> |
|-----------------|-----------------|-----------------------|
| 0               | 0               | 1                     |
| 0               | 1               | 0                     |
| 1               | 0               | 0                     |
| 1               | 1               | 0                     |



# Basic Circuit Diagrams

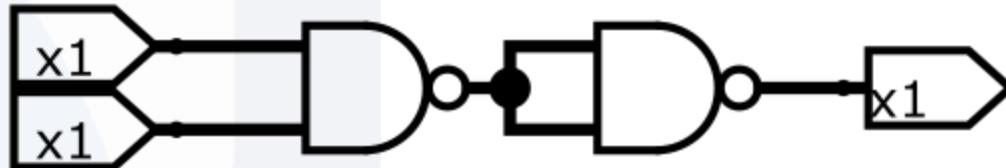
- NAND:

| <b><i>A</i></b> | <b><i>B</i></b> | <b><i>A NAND B</i></b> |
|-----------------|-----------------|------------------------|
| 0               | 0               | 1                      |
| 0               | 1               | 1                      |
| 1               | 0               | 1                      |
| 1               | 1               | 0                      |



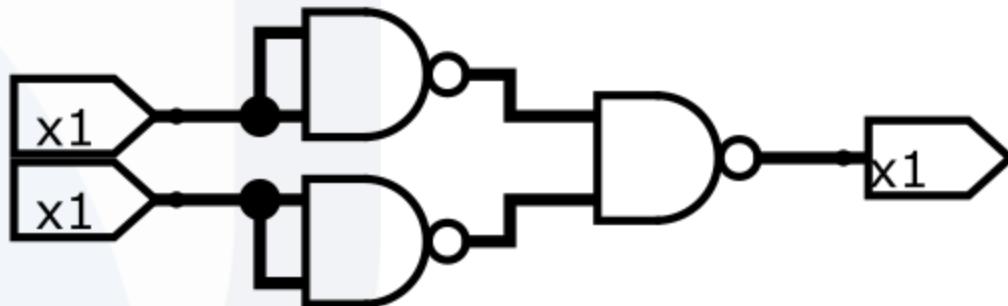
# Universal Gates

- NAND and NOR are both considered universal gates
  - Any circuit that can be built with AND, OR, and NOT can also be built exclusively with NAND gates (or NOR gates)


# Universal Gates

- NAND and NOR are both considered universal gates
  - Any circuit that can be built with AND, OR, and NOT can also be built exclusively with NAND gates (or NOR gates)
- NOT:




# Universal Gates

- NAND and NOR are both considered universal gates
  - Any circuit that can be built with AND, OR, and NOT can also be built exclusively with NAND gates (or NOR gates)
- AND:



# Universal Gates

- NAND and NOR are both considered universal gates
  - Any circuit that can be built with AND, OR, and NOT can also be built exclusively with NAND gates (or NOR gates)
- OR:



# Homework

- Install the following digital circuit design package before our next lecture:
  - LogiSim Evolution - <https://github.com/reds-heig/logisim-evolution>
  - Instructions are provided on Canvas, under Assignments

# Wrap-up

- Basic electronics
  - mechanical → electromechanical → electrical
  - relays → vacuum tubes → transistors
  - basic electronics
  - digital vs. analog
- Basic logic gates

# What is next?

- Binary addition
- Half adder
- Full adder
- Ripple carry adder
- Fast carry adder