Numeric Representation lli

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

1 OntarioTech

UNIVERSITY

Outline

e Errors detection and correction

e Encoding

o Prefix codes
o Huffman's algorithm

| OntarioTech

UNIVERSITY

Detecting and Correcting Errors

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Error Detection

e The simplest way to detect an error is to use a parity bit

o A redundant bit to ensure that no bits were changed (0 — 1, 1 — 0)
Even parity - set the parity bit such that the total number of 1s is even
Odd parity - set the parity bit such that the total number of 1s is odd
Can only detect single-bit errors
Cannot correct the error

(@)
(@)
(@)
(@)

1 OntarioTech

UNIVERSITY

Error Detection

e Example (even parity):

(@)

(@)
(@)
(@)

Sent: 0000 0110 O

Received: 0000 0100 O

The total number of 1sis 1, which is odd
Therefore, there must have been an error

1 OntarioTech

UNIVERSITY

Error Detection

e Another example (even parity):
o Sent: 0000 0110 O
o Received: 0010 0100 0
o The total number of 1sis 2, which is even
o No error is detected

1 OntarioTech

UNIVERSITY

Hamming Distance

e Hamming distance is the number of symbols in one string that are different
from the symbols at the same location in another string
e Example:

0011 0110 0111 1011

rrr ot

0010 0011 0110 1011

Hamming distance: 4

1 OntarioTech

UNIVERSITY

Hamming Distance

e A parity bit can only detect errors where the hamming distance is 1
e One way to improve our resistance to errors is to choose an encoding where
the hamming distance between values is larger

e Example:

o 000 represents 0
o 111 represents 1

e Now, if we receive 010, we could assume that this was a 0 value

1 OntarioTech

UNIVERSITY

Error Correction

e The following is a simple scheme (called Hamming(7,4)) for encoding data

such that errors are correctable
o The scheme used by ECC RAM is similar
e In the left diagram, we have 4 bits of information encoded
o In the centre diagram, the ‘parity’ bits have been added to make even parity within the circles
o The parity overlaps, so that we can figure out which bit is in error
o Theright diagram shows an example with a data bit error (parity bit errors are similar)

Q] 4 > Eéror
= - N

Error Correction

e Let'sdo an example (even parity)
o Consider the following bits: 1100

Error Correction

e Let'sdo an example (even parity)
o What should the parity bit be for A?

Error Correction

e Let'sdo an example (even parity)
o What should the parity bit be for A? 1

Error Correction

e Let'sdo an example (even parity)
o What should the parity bit be for B?

Error Correction

e Let'sdo an example (even parity)
o What should the parity bit be for B? 0

Error Correction

e Let'sdo an example (even parity)
o What should the parity bit be for C?

Error Correction

e Let'sdo an example (even parity)
o What should the parity bit be for C? 1

Error Correction

e Let's do another example (even parity)
o Let’s verify the parity bits: A
m A

i
<

Error Correction

e Let's do another example (even parity)
o Let’s verify the parity bits: A
m A: correct
m B:

i
<

Error Correction

e Let's do another example (even parity)
o Let’s verify the parity bits: A
m A: correct
m B: incorrect

=T
&

Error Correction

e Let's do another example (even parity)
o Let’s verify the parity bits: A
m A: correct
m B: incorrect
m C: incorrect
o Since the error must be in both B and
C, but not A, the error must be here

S

Error Correction

e Let's do another example (even parity)
o Let’s verify the parity bits: A
m A

5
<

Error Correction

e Let's do another example (even parity)
o Let’s verify the parity bits: A
m A: correct
m B:

5
<

Error Correction

e Let's do another example (even parity)
o Let’s verify the parity bits: A
m A: correct
m B: correct

=T
“H

Error Correction

e Let's do another example (even parity)
o Let’s verify the parity bits: A
m A: correct
m B: correct
m C: incorrect
o Since the error must be in C, but not
in A or B, the error must be the parity
bitin C qb
o The parity bits even check
themselves!

Error Correction

e Extending this system to larger values is a bit more complicated
e The overhead (extra bits required) becomes less significant for larger values

Word size | Check bits | Total size | Percent overhead

8 4 12 50

16 5 21 31

32 6 38 19

64 7 71 11

128 8 136 6
256 9 265 4
512 10 522 2

See: hitps://www.youtube.com/watch?v=X8jsijhlllA and https://www.youtube.com/watch?v=b3NxrZOu_CE for more information

https://www.youtube.com/watch?v=X8jsijhllIA
https://www.youtube.com/watch?v=b3NxrZOu_CE

Encoding

CSCI 2050U - Computer Architecture

1 OntarioTech

UNIVERSITY

Fixed-length Encoding

e Say we want to encode DNA in binary
o DNA is made up of sequences of nucleotides
o There are four possible values (see table)
o For simplicity, we'll say that each is equally likely

adenine
cytosine

guanine

- ® O >

thymine

1 OntarioTech

UNIVERSITY

Fixed-length Encoding

e Say we want to encode DNA in binary
o DNA is made up of sequences of nucleotides
o There are four possible values (see table)
o For simplicity, we'll say that each is equally likely
e Other fixed-length encodings:
o ASCII
adenine 00

cytosine 01

guanine 10

- ® O >

thymine 11

1 OntarioTech

UNIVERSITY

Variable-length Encoding

e \What if the choices are not equally likely?
e Consider letters in the English alphabet (e.g. encoding a text message)
o We could save some space if more common letters were given shorter codes

e Let'ssaythat‘a and ‘b’ are common, but ‘c’ and ‘d’ are less common
o What about the following codes?

Letter Code
a 0

b 1

c 00

d 11

1 OntarioTech

UNIVERSITY

Variable-length Encoding

e Let's consider the binary value: 000111

e Possible interpretations:
O aaabbb
acbd
cabd
acdb Letter Code
cadb
aaabd
aaadb b 1
acbbb
cabbb

c 00

0O 0O O O O O O O

d 11

1 OntarioTech

UNIVERSITY

Variable-length Encoding

e In order to avoid ambiguity, we need the codes to be prefix codes
o In a prefix code, each code has a unique prefix that is not shared with any other code
o In this way, we can identify each encoded symbol

e Let's consider the binary value: 110100101
o The only interpretation of this binary value is badc

Letter Code
a 0

b 11

c 101

d 100

1 OntarioTech

UNIVERSITY

Huffman’s Algorithm

1. HUFFMAN (C) :

2. n= |C|

3. Q =C

4, for 1 =1 to n-1

5. create a new node z

6 x = EXTRACT-MIN (Q)

7 y = EXTRACT-MIN (Q)

8. z.left = x

9. z.right = vy

10. z.freq = x.freq + y.freq

11. INSERT (Q, z)
12. end for
13. return EXTRACT-MIN (Q)

Huffman’s Algorithm

e Huffman’s algorithm uses a (min) priority queue
o A priority queue behaves like a queue, except that higher priority items jump ahead of lower
priority items
m Thisis similar to triage in an emergency room

Character Frequency
a 45

b 13

c 12

d 16

e 9

f 5

Huffman’s Algorithm

e \We start by adding all characters/frequencies to a min priority queue

Character

(@)

Frequencies, in this case, are the priority value

Frequency
45

13

12

16

9

5

f: 5

c: 12

b: 13

d: 16

a: 45

Huffman’s Algorithm

e Dequeue the first two elements from the priority queue
o Join them together into a single node and enqueue that new node
o The frequency of the new node is the sum of the frequencies of the two elements dequeued

Character | Frequency c: 12 b: 13 ef: 14 d: 16 a: 45
a 45

b 13 f. 5 e 9

c 12

d 16

e 9

f 5

Huffman’s Algorithm

e Keep repeating this process until there is only a single node in the queue:

Character | Frequency ef: 14 d: 16 bc: 25 a: 45
a 45

b 13 f: 5 e:9 c: 12 b: 13

c 12

d 16

e 9

f 5

Huffman’s Algorithm

e Keep repeating this process until there is only a single node in the queue:

Character | Frequency bc: 25 def: 30 a 45
b 13 c: 12 b: 13 ef: 14 d: 16
c 12

q 16 f.: 5 e:9

e 9

f 5

Huffman’s Algorithm

e Keep repeating this process until there is only a single node in the queue:

Character

Frequency
45

13

12

16

9

5

a: 45 bcdef: 55
bc: 25 def: 30
.
c: 12 b: 13 ef: 14 d: 16
f: 5 e:9

Huffman’s Algorithm

e Keep repeating this process until there is only a single node in the queue:

Character

Frequency
45

13

12

16

9

5

abcdef: 100

\

a: 45

bcdef: 55

bc: 25

def: 30

c: 12

b: 13

ef: 14

d: 16

f: 5

Huffman’s Algorithm

e Now label each left child 0, and each right child 1

The prefix codes for each letter can be found by tracing the path to that node in this tree

(@)

Character

a

b

Frequency
45

13

12

16

9

5

Prefix Code

0

101

100

111

1101

1100

abcdef: 100

\1

a: 45

bcdef: 55

0 1

def: 30

c: 12

b: 13

ef: 14 d: 16

f: 5

Wrap-up

e Errors detection and correction
o Parity
o Hamming distance
o Error correcting codes
e Encoding
o Prefix codes
o Huffman's algorithm

| OntarioTech

UNIVERSITY

What is next?

e Basic electronics
o Diodes
m Light emitting diodes (LEDs)
o Resistors
o Transistors

| OntarioTech

UNIVERSITY

	Slide 1: Numeric Representation III
	Slide 2: Outline
	Slide 3: Detecting and Correcting Errors
	Slide 4: Error Detection
	Slide 5: Error Detection
	Slide 6: Error Detection
	Slide 7: Hamming Distance
	Slide 8: Hamming Distance
	Slide 9: Error Correction
	Slide 10: Error Correction
	Slide 11: Error Correction
	Slide 12: Error Correction
	Slide 13: Error Correction
	Slide 14: Error Correction
	Slide 15: Error Correction
	Slide 16: Error Correction
	Slide 17: Error Correction
	Slide 18: Error Correction
	Slide 19: Error Correction
	Slide 20: Error Correction
	Slide 21: Error Correction
	Slide 22: Error Correction
	Slide 23: Error Correction
	Slide 24: Error Correction
	Slide 25: Error Correction
	Slide 26: Encoding
	Slide 27: Fixed-length Encoding
	Slide 28: Fixed-length Encoding
	Slide 29: Variable-length Encoding
	Slide 30: Variable-length Encoding
	Slide 31: Variable-length Encoding
	Slide 32: Huffman’s Algorithm
	Slide 33: Huffman’s Algorithm
	Slide 34: Huffman’s Algorithm
	Slide 35: Huffman’s Algorithm
	Slide 36: Huffman’s Algorithm
	Slide 37: Huffman’s Algorithm
	Slide 38: Huffman’s Algorithm
	Slide 39: Huffman’s Algorithm
	Slide 40: Huffman’s Algorithm
	Slide 41: Wrap-up
	Slide 42: What is next?

