
Numeric Representation III

CSCI 2050U - Computer Architecture

Randy J. Fortier
@randy_fortier

Outline

● Errors detection and correction

● Encoding
○ Prefix codes

○ Huffman's algorithm

Detecting and Correcting Errors

CSCI 2050U - Computer Architecture

Error Detection

● The simplest way to detect an error is to use a parity bit
○ A redundant bit to ensure that no bits were changed (0 ➝ 1, 1 ➝ 0)

○ Even parity - set the parity bit such that the total number of 1s is even

○ Odd parity - set the parity bit such that the total number of 1s is odd

○ Can only detect single-bit errors

○ Cannot correct the error

Error Detection

● Example (even parity):
○ Sent: 0000 0110 0

○ Received: 0000 0100 0

○ The total number of 1s is 1, which is odd

○ Therefore, there must have been an error

Error Detection

● Another example (even parity):
○ Sent: 0000 0110 0

○ Received: 0010 0100 0

○ The total number of 1s is 2, which is even

○ No error is detected

Hamming Distance

● Hamming distance is the number of symbols in one string that are different

from the symbols at the same location in another string

● Example:

0011 0110 0111 1011

0010 0011 0110 1011

Hamming distance: 4

Hamming Distance

● A parity bit can only detect errors where the hamming distance is 1

● One way to improve our resistance to errors is to choose an encoding where

the hamming distance between values is larger

● Example:
○ 000 represents 0

○ 111 represents 1

● Now, if we receive 010, we could assume that this was a 0 value

Error Correction

● The following is a simple scheme (called Hamming(7,4)) for encoding data

such that errors are correctable
○ The scheme used by ECC RAM is similar

● In the left diagram, we have 4 bits of information encoded
○ In the centre diagram, the ‘parity’ bits have been added to make even parity within the circles

○ The parity overlaps, so that we can figure out which bit is in error

○ The right diagram shows an example with a data bit error (parity bit errors are similar)

Error Correction

● Let’s do an example (even parity)
○ Consider the following bits: 1100

1 0

0

1

A

B

C

Error Correction

● Let’s do an example (even parity)
○ What should the parity bit be for A?

1 0

0

1

A

B

C

Error Correction

● Let’s do an example (even parity)
○ What should the parity bit be for A? 1

1 0

0

1

A

B

C

1

Error Correction

● Let’s do an example (even parity)
○ What should the parity bit be for B?

1 0

0

1

A

B

C

1

Error Correction

● Let’s do an example (even parity)
○ What should the parity bit be for B? 0

1 0

0

1

A

B

C

1

0

Error Correction

● Let’s do an example (even parity)
○ What should the parity bit be for C?

1 0

0

1

A

B

C

1

0

Error Correction

● Let’s do an example (even parity)
○ What should the parity bit be for C? 1

1 0

0

1

A

B

C

1

0

1

Error Correction

● Let’s do another example (even parity)
○ Let’s verify the parity bits:

■ A:

1 1

0

0

A

B

C

0

1

0

Error Correction

● Let’s do another example (even parity)
○ Let’s verify the parity bits:

■ A: correct

■ B:

1 1

0

0

A

B

C

0

1

0

Error Correction

● Let’s do another example (even parity)
○ Let’s verify the parity bits:

■ A: correct

■ B: incorrect

■ C:

1 1

0

0

A

B

C

0

1

0

Error Correction

● Let’s do another example (even parity)
○ Let’s verify the parity bits:

■ A: correct

■ B: incorrect

■ C: incorrect

○ Since the error must be in both B and

C, but not A, the error must be here

1 1

0

0

A

B

C

0

1

0

Error Correction

● Let’s do another example (even parity)
○ Let’s verify the parity bits:

■ A:

1 0

0

0

A

B

C

1

1

1

Error Correction

● Let’s do another example (even parity)
○ Let’s verify the parity bits:

■ A: correct

■ B:

1 0

0

0

A

B

C

1

1

1

Error Correction

● Let’s do another example (even parity)
○ Let’s verify the parity bits:

■ A: correct

■ B: correct

■ C:

1 0

0

0

A

B

C

1

1

1

Error Correction

● Let’s do another example (even parity)
○ Let’s verify the parity bits:

■ A: correct

■ B: correct

■ C: incorrect

○ Since the error must be in C, but not

in A or B, the error must be the parity

bit in C

○ The parity bits even check

themselves!

1 0

0

0

A

B

C

1

1

1

Error Correction

● Extending this system to larger values is a bit more complicated

● The overhead (extra bits required) becomes less significant for larger values

See: https://www.youtube.com/watch?v=X8jsijhllIA and https://www.youtube.com/watch?v=b3NxrZOu_CE for more information

https://www.youtube.com/watch?v=X8jsijhllIA
https://www.youtube.com/watch?v=b3NxrZOu_CE

Encoding

CSCI 2050U - Computer Architecture

Fixed-length Encoding

● Say we want to encode DNA in binary
○ DNA is made up of sequences of nucleotides

○ There are four possible values (see table)

○ For simplicity, we’ll say that each is equally likely

A adenine

C cytosine

G guanine

T thymine

Fixed-length Encoding

● Say we want to encode DNA in binary
○ DNA is made up of sequences of nucleotides

○ There are four possible values (see table)

○ For simplicity, we’ll say that each is equally likely

● Other fixed-length encodings:
○ ASCII

A adenine 00

C cytosine 01

G guanine 10

T thymine 11

Variable-length Encoding

● What if the choices are not equally likely?

● Consider letters in the English alphabet (e.g. encoding a text message)
○ We could save some space if more common letters were given shorter codes

● Let’s say that ‘a’ and ‘b’ are common, but ‘c’ and ‘d’ are less common
○ What about the following codes?

Letter Code

a 0

b 1

c 00

d 11

Variable-length Encoding

● Let’s consider the binary value: 000111

● Possible interpretations:
○ aaabbb

○ acbd

○ cabd

○ acdb

○ cadb

○ aaabd

○ aaadb

○ acbbb

○ cabbb

Letter Code

a 0

b 1

c 00

d 11

Variable-length Encoding

● In order to avoid ambiguity, we need the codes to be prefix codes
○ In a prefix code, each code has a unique prefix that is not shared with any other code

○ In this way, we can identify each encoded symbol

● Let’s consider the binary value: 110100101
○ The only interpretation of this binary value is badc

Letter Code

a 0

b 11

c 101

d 100

Huffman’s Algorithm

1. HUFFMAN(C):

2. n = |C|

3. Q = C

4. for i = 1 to n-1

5. create a new node z

6. x = EXTRACT-MIN(Q)

7. y = EXTRACT-MIN(Q)

8. z.left = x

9. z.right = y

10. z.freq = x.freq + y.freq

11. INSERT(Q,z)

12. end for

13. return EXTRACT-MIN(Q)

Huffman’s Algorithm

● Huffman’s algorithm uses a (min) priority queue
○ A priority queue behaves like a queue, except that higher priority items jump ahead of lower

priority items

■ This is similar to triage in an emergency room

Character Frequency

a 45

b 13

c 12

d 16

e 9

f 5

Huffman’s Algorithm

● We start by adding all characters/frequencies to a min priority queue
○ Frequencies, in this case, are the priority value

Character Frequency

a 45

b 13

c 12

d 16

e 9

f 5

f: 5 e: 9 c: 12 b: 13 d: 16 a: 45

Huffman’s Algorithm

● Dequeue the first two elements from the priority queue
○ Join them together into a single node and enqueue that new node

○ The frequency of the new node is the sum of the frequencies of the two elements dequeued

Character Frequency

a 45

b 13

c 12

d 16

e 9

f 5

f: 5 e: 9

c: 12 b: 13 d: 16 a: 45ef: 14

Huffman’s Algorithm

● Keep repeating this process until there is only a single node in the queue:

Character Frequency

a 45

b 13

c 12

d 16

e 9

f 5

f: 5 e: 9 c: 12 b: 13

d: 16 a: 45ef: 14 bc: 25

Huffman’s Algorithm

● Keep repeating this process until there is only a single node in the queue:

Character Frequency

a 45

b 13

c 12

d 16

e 9

f 5

f: 5 e: 9

c: 12 b: 13 d: 16

a: 45

ef: 14

bc: 25 def: 30

Huffman’s Algorithm

● Keep repeating this process until there is only a single node in the queue:

Character Frequency

a 45

b 13

c 12

d 16

e 9

f 5 f: 5 e: 9

c: 12 b: 13 d: 16

a: 45

ef: 14

bc: 25 def: 30

bcdef: 55

Huffman’s Algorithm

● Keep repeating this process until there is only a single node in the queue:

Character Frequency

a 45

b 13

c 12

d 16

e 9

f 5 f: 5 e: 9

c: 12 b: 13 d: 16

a: 45

ef: 14

bc: 25 def: 30

bcdef: 55

abcdef: 100

Huffman’s Algorithm

● Now label each left child 0, and each right child 1
○ The prefix codes for each letter can be found by tracing the path to that node in this tree

Character Frequency Prefix Code

a 45 0

b 13 101

c 12 100

d 16 111

e 9 1101

f 5 1100

f: 5 e: 9

c: 12 b: 13 d: 16

a: 45

ef: 14

bc: 25 def: 30

bcdef: 55

abcdef: 100

0 1

1

1

1

1

0

0

0

0

Wrap-up

● Errors detection and correction
○ Parity

○ Hamming distance

○ Error correcting codes

● Encoding
○ Prefix codes

○ Huffman's algorithm

What is next?

● Basic electronics
○ Diodes

■ Light emitting diodes (LEDs)

○ Resistors

○ Transistors

	Slide 1: Numeric Representation III
	Slide 2: Outline
	Slide 3: Detecting and Correcting Errors
	Slide 4: Error Detection
	Slide 5: Error Detection
	Slide 6: Error Detection
	Slide 7: Hamming Distance
	Slide 8: Hamming Distance
	Slide 9: Error Correction
	Slide 10: Error Correction
	Slide 11: Error Correction
	Slide 12: Error Correction
	Slide 13: Error Correction
	Slide 14: Error Correction
	Slide 15: Error Correction
	Slide 16: Error Correction
	Slide 17: Error Correction
	Slide 18: Error Correction
	Slide 19: Error Correction
	Slide 20: Error Correction
	Slide 21: Error Correction
	Slide 22: Error Correction
	Slide 23: Error Correction
	Slide 24: Error Correction
	Slide 25: Error Correction
	Slide 26: Encoding
	Slide 27: Fixed-length Encoding
	Slide 28: Fixed-length Encoding
	Slide 29: Variable-length Encoding
	Slide 30: Variable-length Encoding
	Slide 31: Variable-length Encoding
	Slide 32: Huffman’s Algorithm
	Slide 33: Huffman’s Algorithm
	Slide 34: Huffman’s Algorithm
	Slide 35: Huffman’s Algorithm
	Slide 36: Huffman’s Algorithm
	Slide 37: Huffman’s Algorithm
	Slide 38: Huffman’s Algorithm
	Slide 39: Huffman’s Algorithm
	Slide 40: Huffman’s Algorithm
	Slide 41: Wrap-up
	Slide 42: What is next?

