

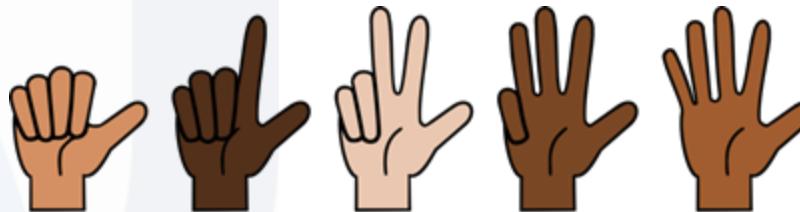
Numeric Representation I

CSCI 2050U - Computer Architecture

Lecture Outline

- Decimal numbers
- Other bases

Decimal Numbers


CSCI 2050U - Computer Architecture

Why do humans use decimal?

- Computers use binary to represent numbers
- Humans (mostly) use decimal (base 10) to represent numbers
- Why?

Why do humans use decimal?

- Computers use binary to represent numbers
- Humans (mostly) use decimal to represent numbers
- Why?
 - Humans have ten fingers, and we often use (or have used) our fingers to count

The Decimal Number System

- Review: how does the decimal number system work?
- What do the digits in the following decimal number mean?

7450

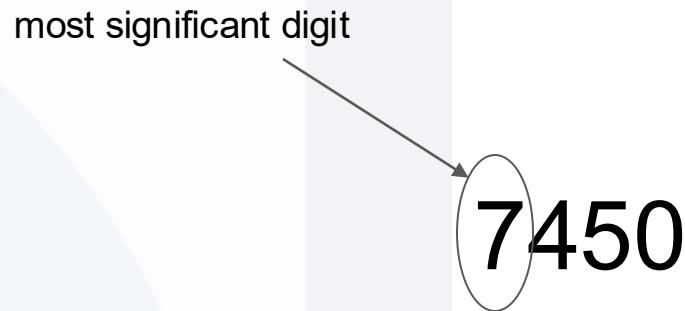
The Decimal Number System

- Review: how does the decimal number system work?
- What do the digits in the following decimal number mean?

$$7450 = 7 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 0 \times 10^0$$

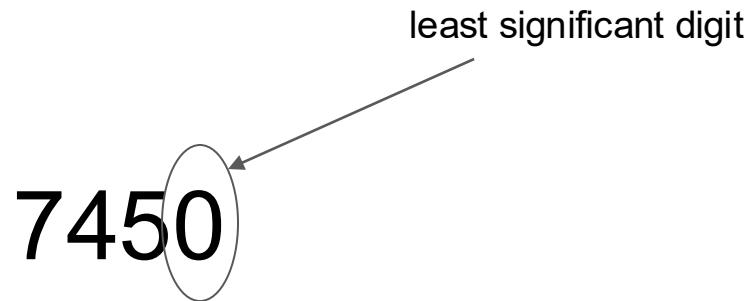
The Decimal Number System

- Review: how does the decimal number system work?
- The digits can be any number in the range [0..9] (10 unique digits)


$$7450 = 7 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 0 \times 10^0$$

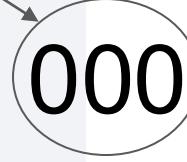
The Decimal Number System

7450


The Decimal Number System

- The leftmost digit is referred to as the most significant digit, since it has the biggest influence on the magnitude of the number

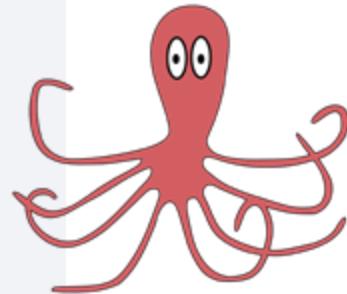
The Decimal Number System


- The rightmost digit is referred to as the least significant digit, since it has the smallest influence on the magnitude of the number

The Decimal Number System

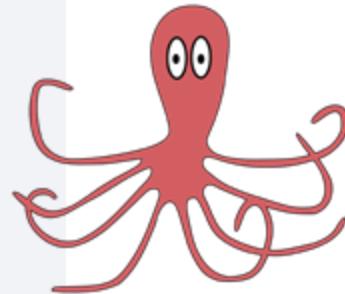
- Zeroes to the left of the number do not affect its magnitude

leading zeroes


0007450

Other Bases

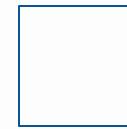
CSCI 2050U - Computer Architecture


What if our bodies were different?

- Imagine that we're intelligent octopi
- What kind of number system would we likely use?

What if our bodies were different?

- We might count using our tentacles
- A base 8 system might make more sense for an octopus



An Octal (Base 8) System

- A base 8 system would have 8 unique digits, in the range [0..7]

$$1073_8 = 1 \times 8^3 + 0 \times 8^2 + 7 \times 8^1 + 3 \times 8^0$$

Converting from Octal to Decimal

- Converting from octal to decimal is rather easy:

Converting from Octal to Decimal

- 1. Add each octal digit to the boxes below:

1

0

7

3

Converting from Octal to Decimal

- 2. Multiply each times the corresponding power of 8:

1

$\times 8^3$

0

$\times 8^2$

7

$\times 8^1$

3

$\times 8^0$

Converting from Octal to Decimal

- 2. Multiply each times the corresponding power of 8:

1

$\times 512$

0

$\times 64$

7

$\times 8$

3

$\times 1$

512

0

56

3

Converting from Octal to Decimal

- 3. Add up the results:

$$\begin{array}{cccc} 1 & 0 & 7 & 3 \\ \times 512 & \times 64 & \times 8 & \times 1 \\ 512 & 0 & 56 & 3 \\ + & + & + & \\ \hline & & & = 571 \end{array}$$

Converting from Decimal to Octal

- **Converting** from decimal to octal is also easy:

Converting from Decimal to Octal

- 1. Write the number into the left-most box

A blue-outlined square box containing the number 571.An empty blue-outlined square box.An empty blue-outlined square box.An empty blue-outlined square box.

Converting from Decimal to Octal

- 2. Divide by the largest possible power of 8

571

$\div 512$

$\div 64$

$\div 8$

$\div 1$

Converting from Decimal to Octal

- 3. Write the (integer) quotient in the box, below

571

$\div 512$

1

$\div 64$

$\div 8$

$\div 1$

Converting from Decimal to Octal

- 4. Write the remainder in the box to the right

571

$\div 512$

1

59

$\div 64$

$\div 8$

$\div 1$

Converting from Decimal to Octal

- 5. Repeat for successively lower powers of 8

571

$\div 512$

1

59

$\div 64$

0

$\div 8$

$\div 1$

Converting from Decimal to Octal

- 5. Repeat for successively lower powers of 8

571

$\div 512$

1

59

$\div 64$

0

59

$\div 8$

$\div 1$

Converting from Decimal to Octal

- 5. Repeat for successively lower powers of 8

571

$\div 512$

1

59

$\div 64$

0

59

$\div 8$

7

$\div 1$

Converting from Decimal to Octal

- 5. Repeat for successively lower powers of 8

571

$\div 512$

1

59

$\div 64$

0

59

$\div 8$

7

3

$\div 1$

Converting from Decimal to Octal

- 5. Repeat for successively lower powers of 8

571	59	59	3
$\div 512$	$\div 64$	$\div 8$	$\div 1$
1	0	7	3

Wrap-up

- Decimal numbers
 - Positional numbering
 - Most/least significant digits
 - Leading zeroes
- Other bases
 - Octal
 - Converting octal to decimal
 - Converting decimal to octal

What is next?

- Binary
- Hexadecimal
- Error detection and correction
- Representing characters