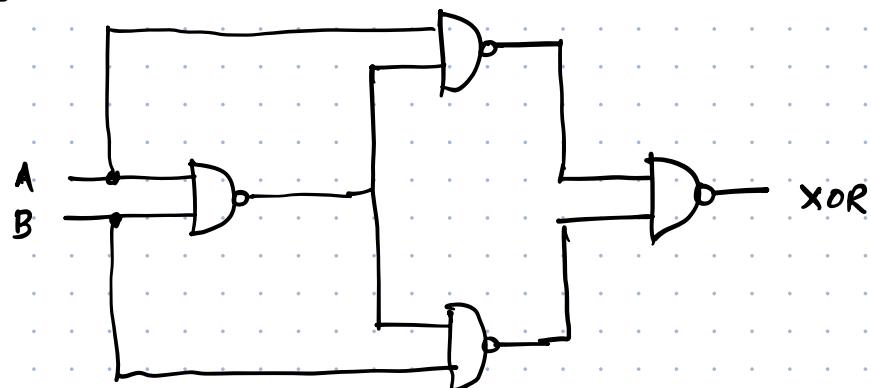


Jan 30, 2026

XOR gate using NAND gates

A	B	XOR
0	0	0
0	1	1
1	0	1
1	1	0



Add to +ve numbers ✓

Subtract B from A ? $\rightsquigarrow A - B = \underbrace{A + (-B)}$

$$\begin{array}{c} +ve \quad -ve \\ \downarrow \quad \downarrow \\ A + (-B) \end{array}$$

addition

💡 We need a new way to represent -ve numbers that would allow us to carry out computations of the form: $A - B$.

1's Complement

(i) +ve numbers \rightarrow left most bit is 0.

(ii) -ve numbers \rightarrow left most bit is 1 and the rest of the bits are flipped.

+7 \rightsquigarrow 0 1 1 1

-6 \rightsquigarrow (a) 6 \rightarrow 110
(b) 001 \leftarrow Flip
(c) 1 0 0 1 \leftarrow

Example: 1 0 1 1 1

(i) -ve
(ii) 0 1 1 1 \leftarrow Flip \rightarrow 1 0 0 0 \rightarrow 8
(iii) -8

Example :

(i) +ve

(ii) 1010 \longrightarrow 10

(iii) +10

Example :

(i) +ve

(ii) 00000000

(iii) +0

Example :

(i) -ve

(ii) 1111111 $\xrightarrow{\text{Flip}}$ 0000000

(iii) -0

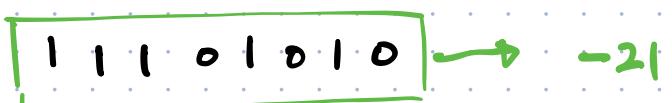
* Solve $28 - 21$

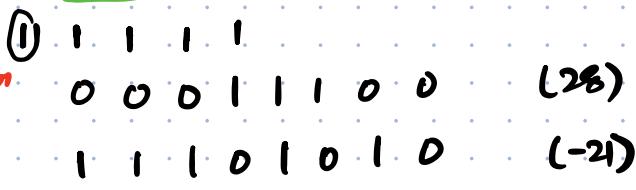
(i) Store 28 in 1's complement

$28 \rightarrow 11100$

(ii) Store -21 in 1's complement

$21 \rightarrow 10101$ $\xrightarrow{\text{Flip}}$ 01010



(iii) 

no overflow

Wrong answer.
off by 1.

Rough Work

$\begin{array}{r} 100000 \\ 1000 \\ 100 \\ \hline \end{array} + 16 \\ + 8 \\ + 4 \\ \hline$

$\begin{array}{r} 100000 \\ 100 \\ 1 \\ \hline \end{array} + 16 \\ + 4 \\ \hline 10101$

(iv) Convert the answer back to decimal

0 0 0 0 0 1 1 0
↓ ↓
+ve 6

+6

2's complement

(i) Take 1's complement and add 1

- standard

- gets rid of double zeros

- addition is easier / subtraction is easier

when -ve

* Store -3 in 2's complement.

1 1 0 1 ← 2's complement.

(i) -ve

(ii) $3 \rightarrow 011 \xrightarrow{\text{flip}} 100$

(iii) 1's complement: 1100

(iv) Add 1:

$$\begin{array}{r} 1100 \\ 1 \\ \hline 1101 \end{array}$$

* How to decode 2's complement.

1 1 0 1
3 2 1 0 ← positions
 $\begin{smallmatrix} 3 & 2 & 1 & 0 \\ 2 & 2 & 2 & 2 \end{smallmatrix}$
↓
 $\begin{smallmatrix} -2 & 2 & 2 & 2 \\ -8 & 4 & 2 & 1 \end{smallmatrix}$

$$1 \times (-8) + 1 \times (4) + 0 \times (2) + 1 \times (1)$$

$$= -8 + 4 + 1$$

$$= \boxed{-3}$$

* Example: Convert $\begin{smallmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{smallmatrix}$ that is stored in 2's complement into decimal.

$\begin{array}{ccccccc} & \checkmark & \checkmark & \checkmark & & & \checkmark \\ -128 & 64 & 32 & 16 & 8 & 4 & 2 & 1 \\ x1 & x1 & x1 & x0 & x0 & x0 & x0 & x1 \end{array}$

* Example: $108 - 20$

(i) Store $+108$ in 2's complement: 01101100

(ii) Store -20 in 2's complement: $\begin{array}{r} 11101100 \\ \hline \end{array}$

(iii) Add $\begin{array}{r} 108 + (-20) \\ \hline \end{array}$

$\begin{array}{r} 01011000 \\ \downarrow \\ 64 \ 32 \ 16 \ 8 \ 4 \ 2 \ 1 \end{array}$

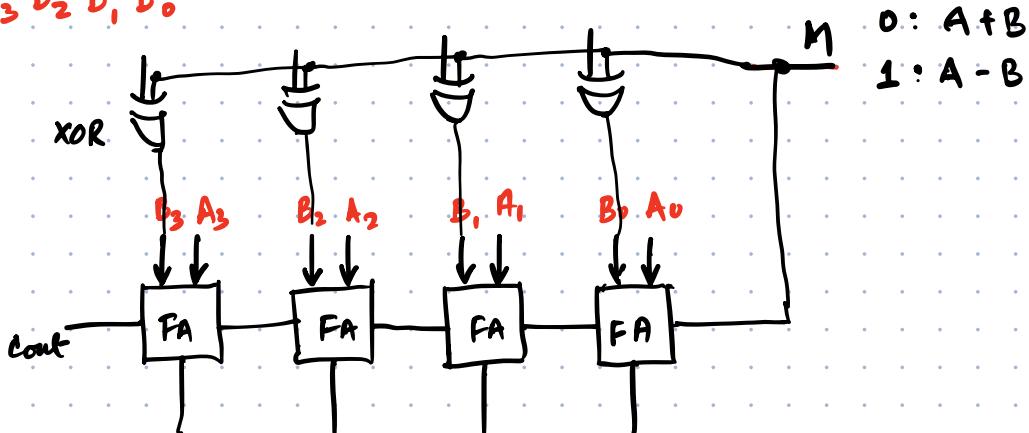
+ve

$$64 + 16 + 8 = \underline{\underline{88}}$$

* Subtractor Circuit

$$A: A_3 A_2 A_1 A_0$$

$$B: B_3 B_2 B_1 B_0$$



* Overflow: result of an arithmetic operation cannot be correctly represented in the allotted bits.

(i) Unsigned integers: recognized by a carry out.

$\begin{array}{r} 0 \\ 1 \\ 1 \\ 10 \\ \hline 10 \end{array}$

carry out

(ii) Signed integers:

- (a) adding a positive and a negative number cannot result in an overflow.
- (b) adding two positive or negative numbers can result in an overflow.

Sign of the result should match the sign of the two numbers.