

January 21, 2026

Binary to decimal

$$\begin{aligned} & 10.101 \\ & = 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 0 \times 2^3 + 1 \times 2^{-3} \\ & = 2.625_{10} \end{aligned}$$

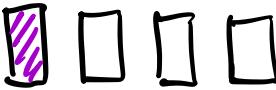
Decimal to Binary

$$\begin{array}{r} 2.625 \\ \hline 10 & 0.625 \\ & \frac{2 \times}{\textcircled{1} \sim 1.250} \\ & 0.25 \\ & \frac{2 \times}{\textcircled{0} \sim 0.5} \\ & 0.5 \\ & \frac{2 \times}{\textcircled{1} \sim 1.0} \\ & 0 \rightarrow \text{Nothing more to do.} \end{array} \quad | \quad 10.101_2$$

Q. How do we store negative numbers?

①

4-bits
↓
Sign bit



0 → +ve
1 → -ve

- unique values $2^4 = 16$
- the range of the numbers that you can represent $0 - 2^4 - 1 = 0 - 15 \quad [0, 15]$

- the range of the numbers that you can represent is $-7 - +7, \quad [-7, 7]$

We only represent 15 unique values. $\because 1000 \neq 0000$

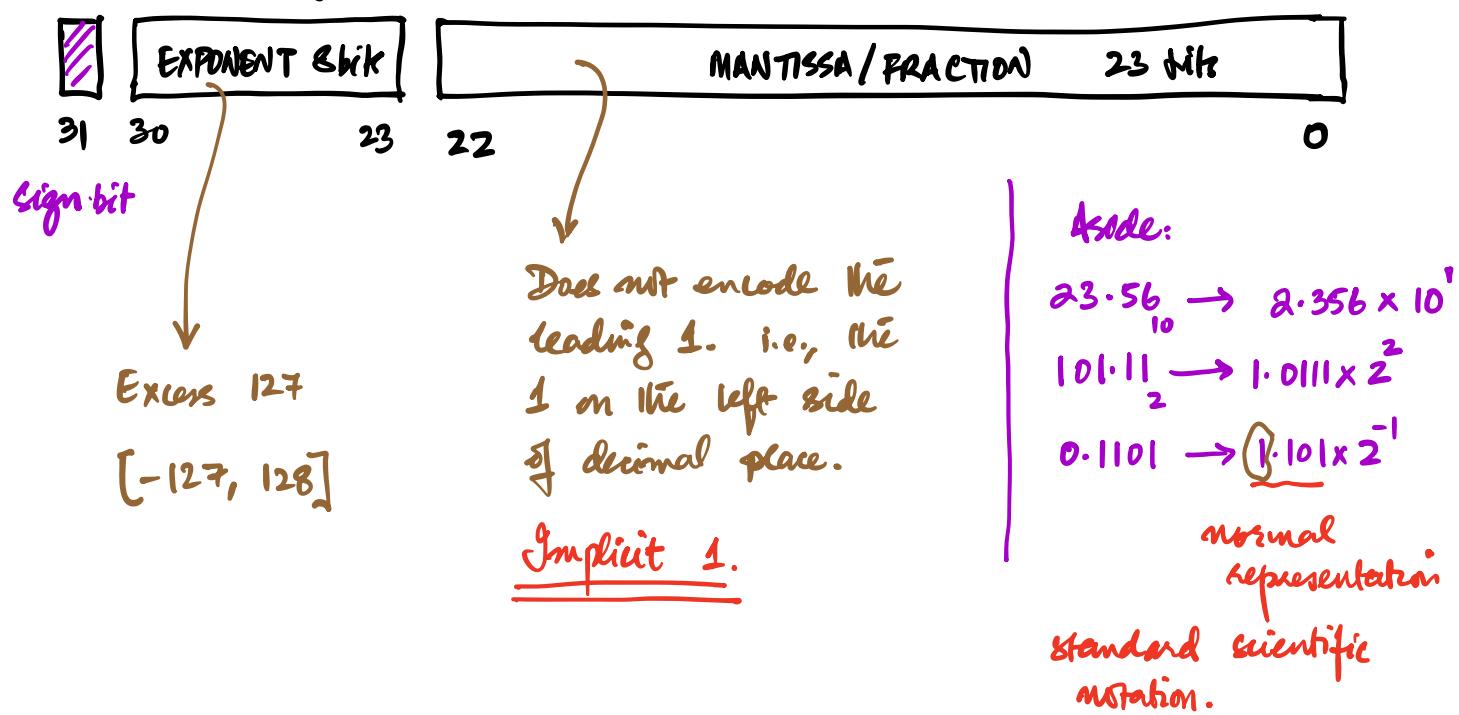
② Excess 7 representation.

$$\text{stored value} = \text{actual value} + 7$$

<u>0 0 0 0 0</u>	<u>0</u>	\longrightarrow	-7
0 0 0 1 1			
0 0 1 0 2			
<u>0 0 1 1 3</u>	<u>3</u>	\longrightarrow	actual value = stored value - 7 = 3 - 7 = <u>-4</u>
0 1 0 0 4			
0 1 0 1 5			
0 1 1 0 6			
0 1 1 1 7			
1 0 0 0 8			
1 0 0 1 9			
1 0 1 0 10			
1 0 1 1 11			
1 1 0 0 12			
\rightarrow 1 1 0 1 13			
1 1 1 0 14			
<u>1 1 1 1 15</u>	<u>15</u>	\longrightarrow	8

This scheme can represent numbers $[-7, 8]$.

* 32-bit Floating Point (IEEE 754)



Example: store -13.625_{10}

(i) sign bit 1

(ii) $13.625_{10} = 1101.101_2$

(iii) $1 \cdot \underline{101101} \times 2^3$ normalized form.

(iv) Fraction: 101101

(v) Exponent: 3

(actual value)

stored value = actual value + 127

$$= 3 + 127 = 130_{10} \rightarrow 1000\ 0010$$

Excess 127

Exercise: Convert the following floating point numbers that is stored using 32-bits into decimal.

DxC148 0000

Hexadecimal

Error Detection

↓
detect

↓
correction

Parity bit: a single redundant bit that can be used to detect if a bit was changed.

① Even parity: total # 1's in a message has to be even.

1011100 0

10111000 ✓

1111100 0 X

1111101 0 ✓

② Odd parity: total # 1's in a message has to be odd.

1 0 1 1 1 0 0

1

1 0 1 1 1 0 0 1 ✓

Hamming Distance

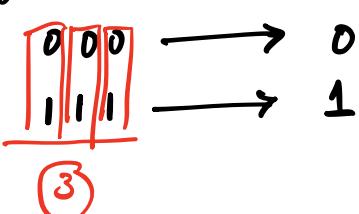
Given two strings of equal length, it counts the positions where the corresponding symbols are different.

a: 1 0 0 1 1 1 0 1
b: 1 1 0 1 1 0 0 1

hamming distance = 2

Parity bit can only detect errors where Hamming distance is 1.

→ One way to improve resistance to errors is to choose encoding where the Hamming distance between adjacent (successive) values is greater.

e.g. 

0 1 0 → 0

1 1 1 → 1

③

Hamming (7,4)

A linear correcting code that encodes 4-bits of data into 7-bits by adding 3 parity bits.

(i) It can correct upto 1 bit errors

(ii) It can detect upto 2 bit errors

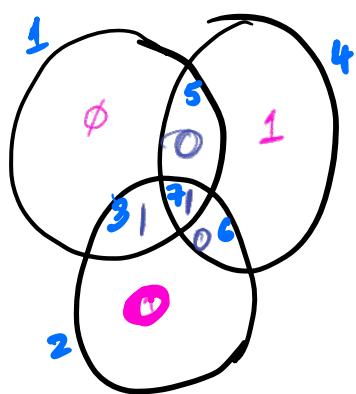
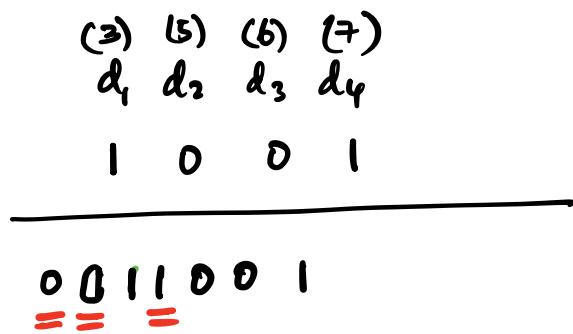
Layout:

positions ↗ $\begin{array}{ccccccc} p_1 & p_2 & d_1 & p_3 & d_2 & d_3 & d_4 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array}$

$p_1 \rightarrow 1, 3, 5, 7$

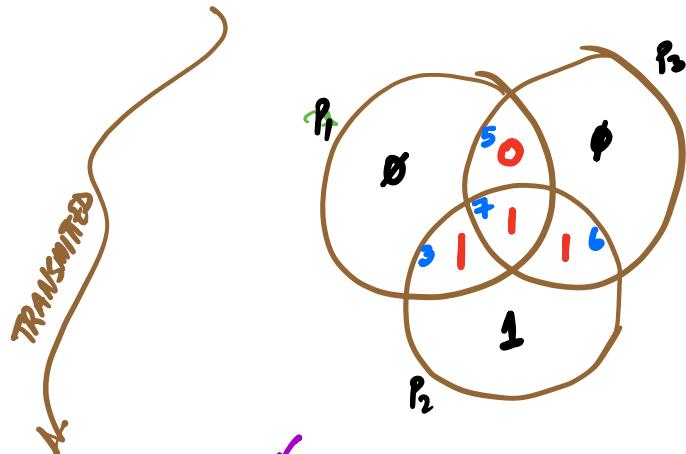
$p_2 \rightarrow 2, 3, 6, 7$

$p_3 \rightarrow 4, 5, 6, 7$



Example: say you want to transmit $\begin{array}{r} (2)(5)(6)(7) \\ 1011 \end{array}$

$\begin{array}{r} 0110011 \\ \hline \text{---} \end{array}$ data



$\begin{array}{r} 0110011 \\ \hline \text{---} \end{array}$

$\begin{array}{r} 1234567 \\ \hline \text{---} \end{array}$

$P_1: X$
 $P_2: X$
 $P_3: X$

$\begin{array}{r} 0110010 \\ \hline \text{---} \end{array}$

$P_3 P_2 P_1$
 $1 \quad 1 \quad 1_2 \longrightarrow 7_{10}$

Exercise: 0110111