Collision Detection Simulation and Modeling (CSCI 3010U)

Faisal Z. Qureshi

http://vclab.science.ontariotechu.ca

Collision Detection

- Detect collision, and back up time to find the exact time of collision
 - Perform binary search on time to find the exact time of collision
- Too slow for many particle systems
- For many particle systems, predict the time to collide and advance the simulation to that time

List of collisions

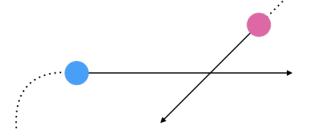
- Maintain a list of collisions, ordered on time to collision
- Don't need to re-compute the collision times in each time step, just look at the first collision on the list and process it
- We then compute a new collision time for this particle and add it to the list
- The new first time on the list becomes our new "next collision"

List of collisions

- This approach can save considerable amount of time
- Predicting "time to collision" usually assumes that the velocity is constant, so it is valid for a few time steps only
- Only track objects that may collide in the near future

Collision detection between moving objects

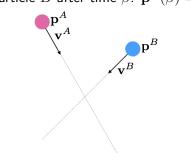
- Consider each pair of objects
- Use their paths to predict whether or not the objects will collide in the near future



Particle-Particle Collision in 2D

Consider two particles A and B with current positions and velocities $(\mathbf{p}^A, \mathbf{v}^A)$ and $(\mathbf{p}^B, \mathbf{v}^B)$ living in a 2D world.

Position of particle A after time α: p^A(α) = p^A + αv^A
Position of particle B after time β: p^B(β) = p^b + βv^B



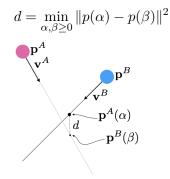
Solve α and β s.t. $\mathbf{p}^{A}(\alpha) = \mathbf{p}^{B}(\beta)$ and $\alpha, \beta \ge 0$. If $\alpha = \beta$, collision!

Particle-Particle Collision in 3D

In the previous slide, we have used line intersection to see whether or not two moving particles will collide. Line intersection is a probability zero event in 3D.

Particle-Particle Collision in 3D

 We solve to following minimization problem to see if two 3D particles will collide



If d is less than some predefined threshold, estimate time it will take for the two particles to get to the point of intersection to see if the two particles will collide

Intersecting lines in 3d

Lines rarely intersect in 3d, so will reframe this problem to estimating the closest distance between two lines.

Consider the following two lines

(line 1)
$$\mathbf{p} = \mathbf{c}_1 + \alpha \mathbf{d}_1$$

(line 2) $\mathbf{q} = \mathbf{c}_2 + \beta \mathbf{d}_2$

Line ${\bf p}-{\bf q}$ must be perpendicular to both line 1 and line 2 when ${\bf p}$ and ${\bf q}$ are closest to each other. Therefore,

$$\mathbf{d}_1^T(\mathbf{p} - \mathbf{q}) = 0$$
$$\mathbf{d}_2^T(\mathbf{p} - \mathbf{q}) = 0$$

Intersecting lines in 3d

It follows

$$\mathbf{d}_1^T \left((\mathbf{c}_1 - \mathbf{c}_1) + \alpha \mathbf{d}_1 - \beta \mathbf{d}_2 \right) = 0$$

$$\mathbf{d}_2^T \left((\mathbf{c}_1 - \mathbf{c}_2) + \alpha \mathbf{d}_1 - \beta \mathbf{d}_2 \right) = 0$$

and

$$\begin{bmatrix} \mathbf{d}_1^T \mathbf{d}_1 & -\mathbf{d}_1^T \mathbf{d}_2 \\ \mathbf{d}_2^T \mathbf{d}_1 & -\mathbf{d}_2^T \mathbf{d}_2 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} -\mathbf{d}_1^T (\mathbf{c}_1 - \mathbf{c}_2) \\ -\mathbf{d}_2^T (\mathbf{c}_1 - \mathbf{c}_2) \end{bmatrix}$$

Solving the above in a least squares fashion should give us $\hat{\alpha}$ and $\hat{\beta}$.

Intersecting lines in 3d

Estimated point from line 1

$$\hat{\mathbf{x}}_1 = \mathbf{c}_1 + \hat{\alpha} \mathbf{d}_1$$

and the estimated point from line 2

$$\hat{\mathbf{x}}_2 = \mathbf{c}_2 + \hat{\beta} \mathbf{d}_2.$$

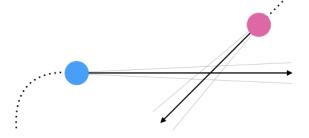
The estimated intersection point is

$$\hat{\mathbf{x}} = \frac{\hat{\mathbf{x}}_1 + \hat{\mathbf{x}}_2}{2}$$

Note that $(\mathbf{c}_1, \mathbf{c}_2, \mathbf{d}_1, \mathbf{d}_2, \hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2, \hat{\mathbf{x}}) \in \mathbb{R}^3$. For rays, check $\hat{\alpha}, \hat{\beta} \ge 0$ and for lines, check $0 \le \hat{\alpha}, \hat{\beta} \le 1$

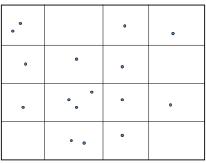
Collision detection between moving objects

Dealing with uncertainty over time



Efficient collision detection

Spatial partitioning

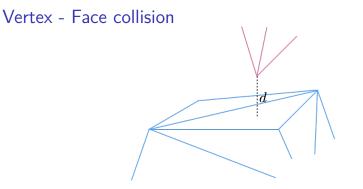


Size of the grid cells should be several times the maximum distance that a particle can travel in time step

- Each grid cell contains a list of particles
 - Lists
 - Hash tables
 - Arrays

Collision detection for rigid bodies

- Possiblities (Polyhedral objects)
 - Vertex Face
 - Vertex Edge
 - Vertex Vertex
 - Edge Edge
 - Edge Face
 - Face Face
- Which of the above situations are more likely to occur in practice?
- Complex rigid objects can have thousands of vertices, edges and faces!
 - Many systems only consider Vertex Face collisions, claiming that other 5 options are too rare to consider



- Compute signed distance between a vertex location (point) and the plane representing the face
- If distance is less than or equal to zero, collision!

Equation of a Plane Using Three Points

Given three points $\mathbf{p}_1 = (x_1, y_1, z_1)$, $\mathbf{p}_2 = (x_2, y_2, z_2)$, and $\mathbf{p}_3 = (x_3, y_3, z_3)$

- 1. Find the two direction vectors: $\mathbf{p}_{12} = \mathbf{p}_2 \mathbf{p}_1$ and $\mathbf{p}_{13} = \mathbf{p}_3 \mathbf{p}_1$.
- 2. Compute normal $\mathbf{n} = (a, b, c)$ using cross-product: $\mathbf{n} = \mathbf{p}_{12} \times \mathbf{p}_{13}$.
- 3. Let $\mathbf{p} = (x, y, z)$ represents any point on the plane (assuming $\mathbf{p} \neq \mathbf{p}_1$), then vector $\mathbf{p}_{1x} = \mathbf{p} \mathbf{p}_1$ is orthogonal to the normal vector, therefore

$$\mathbf{n}^T \mathbf{p}_{1x} = 0$$

(a, b, c)^T ((x - x_1), (y - y_1), (z - z_1)) = 0
a(x - x_1) + b(y - y_1) + c(z - z_1) = 0
ax + by + cz + (-ax_1 - by_1 - cz_1) = 0
ax + by + cz + d = 0

where $d = -ax_1 - by_1 - cz_1$.

Speeding up Rigid Body Collisions

- Spatial partitioning
- Enclose rigid bodies into simpler shapes
 - If simple shapes don't collide then the rigid bodies won't collide as well

Collisions Detetion Between Circles

Two circles collide if the *distance between their centers* is *less than or equal to the sum of their radii*

Example

- Circle 1 center = (x_1, y_1) , radius = r_1
- Circle 2 center = (x_2, y_2) , radius = r_2

The distance between their centers is

$$d_{\text{centers}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

The two circles are colliding if

$$d_{\text{centers}} \leq r_1 + r_2.$$

Collisions Detetion Between Spheres

This is a straightforward extension of the "circles case." Two spheres collide if the *distance between their centers* is *less than or equal to the sum of their radii*

Example

- Circle 1 center = (x_1, y_1, z_1) , radius = r_1
- Circle 2 center = (x_2, y_2, z_2) , radius = r_2

The distance between their centers is

$$d_{\text{centers}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)}.$$

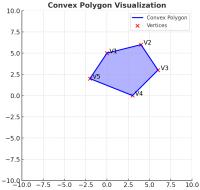
The two circles are colliding if

$$d_{\text{centers}} \leq r_1 + r_2.$$

Collisions Detection Between Polygons in 2D

Convex Polygon

A convex polygon is a polygon where all interior angles are less than 180° , and no line segment between two points inside the polygon extends outside it.



Collisions Detection Between Polygons in 2D

Test for Convex Polygons

- 1. Iterate through all vertices of the polygon.
- 2. Compute the cross product of consecutive edge vectors.
- 3. Check if all cross products have the same sign (either all positive or all negative):
 - All positive: Polygon is convex.
 - All negative: Polygon is convex.
 - Mixed signs: Polygon is concave.

Collisions Detection Between Polygons in 2D

Separataing Axis Theorem (SAT)

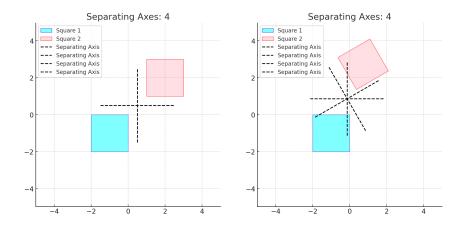
SAT is a method for detecting collisions between convex polygons.

It states:

If two convex polygons are not colliding, there exists at least one separating axis on which their projections do not overlap.

If such a separating axis exists, the polygons do not collide. Otherwise, they must be colliding.

Separating Axes



Separating Axis Theorem (SAT) - in 2D

- **Step 1**: Find the Separating Axes
 - Every edge of a convex polygon has a perpendicular normal vector. These vectors form the set of separating axes.
- Step 2: Project Both Polygons onto Each Axis
 - For each axis, project both polygons by calculating the dot product of their vertices with the axis. Each polygon's projection will be a range(min, max) on the axis.
- **Step 3**: Check for Overlap in Projections
 - If any axis has non-overlapping projections, the polygons do not collide. Exit early.
 - If all projections overlap, the polygons are colliding.

Separating Axis Theorem (SAT) - in 3D

- **Step 1**: Find the Separating Axes
 - Every edge of a convex polygon has a perpendicular normal vector. These vectors form the set of separating axes.
 - Cross-product of every edge combination between two polygons also form the set of separating axes.
- Step 2: Project Both Polygons onto Each Axis
 - For each axis, project both polygons by calculating the dot product of their vertices with the axis. Each polygon's projection will be a range(min, max) on the axis.
- Step 3: Check for Overlap in Projections
 - If any axis has non-overlapping projections, the polygons do not collide. Exit early.
 - If all projections overlap, the polygons are colliding.

Separating Axis Theorem (SAT)

Advantages

- Works for any convex shape (triangle, rectangle, pentagon, etc.)
- Efficient for physics engines (early exit on first separating axis)
- Scalable to 3D collision detection (extra axes for depth)

Limitations

- Does not work for concave polygons (must first decompose them into convex parts).
- Expensive for many polygons (checking multiple axes).

Check out notes on collision response available on the course web.

Summary

- Particle-Particle collision detection in 2D and 3D
- Collision detection between rigid bodies
- Speeding up collision detection