
1 / 25

Computer Vision Notes
Expectation Maximization and Latent Semantic Analysis

Faisal Z. Qureshi
http://vclab.science.uoit.ca

Faculty of Science
Ontario Tech University

February 26, 2024



2 / 25

Copyright information and license

© Faisal Z. Qureshi

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


3 / 25

Finite Mixture Models

▶ D = {x(1), x(2), · · · , x(N)}, where x(i) ∈ Rd.
▶ Assumptions: points are drawn in an i.i.d. fashion from a density

function p(x), which is defined as a finite mixture model with K
components:

p(x|θ) =
K∑

k=1
αkpk(x|zk, θk)

.
Here
▶ pk(x|zk, θk) are mixture components. Each distribution is parameters

θk.
▶ αk = p(zk) are mixture weights. These represent the probability that

a random sample x was generated by component k. Note that∑K
k=1 αk = 1.

▶ z = (z1, z2, · · · , zK) is a vector of k binary indicators zk. Only one of
these can be non-zero.
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Generating Data from a Finite Mixture Model

▶ Pick a model k with probability αk

▶ Sample a data from that model
▶ Repeat
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Likelihood of Mixture Model
Under the i.i.d. assumption

L =
N∏

i=1

K∑
k=1

αkPk(x(i)|zk, θk)

Log likelihood

log L =
N∑

i=1
log

K∑
k=1

αkPk(x(i)|zk, θk)

Parameters for finite mixture models with K components are

Θ = {α1, · · · , αK , θ1, · · · , θK}.

Model fitting

How do we fit our model to data using the maximum likelihood
principle?
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Membership weights

Recall Bayes Theorem:

P (A|B) = P (B|A)P (A)
P (B) = P (B|A)P (A)∑

A P (B|A)P (A)

The membership weight of data point x(i) for component k given
parameter Θ:

wik = p(zik = 1|x(i), Θ) = αkpk(x(i)|zk, θk)∑k
m=1 αmpm(x(i)|zm, θm)

The membership weights capture our uncertainty about which k
components generated the sample x(i). We continue to assume that
x(i) is generated by a single component. Meaning these don’t imply that
the x(i) is a result of weighted sum of K samples generated by K
components.
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Gaussian Mixture Model (GMM)
We set

p(x|θ) =
K∑

k=1
αkN (θk)

where θk = (µk, Σk) and

N (θk) = 1
(2π) d

2 |Σ| 1
2

e− 1
2 (x−µk)T Σ−1

k
(x−µk).
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Generating Data from a GMM (1D)

mixture_of_gaussians = [(-19, 2.5, 0.2, 'r'),
(-1, 4, 0.3, 'g'),
(15, 5, 0.5, 'b')]

K = len(mixture_of_gaussians)
a = np.empty(K)
a = [mixture_of_gaussians[k][2] for k in range(K)]

N = 10
x = np.empty(N)
for i in range(N):

k = np.random.choice(K, 1, a)[0]
mu, sig, _ = mixture_of_gaussians[k]
x[i] = np.random.normal(mu, sig, 1)
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EM for GMM

E-Step: Given current parameter values Θ, compute wik for each data
point - mixture component pair.

wik = p(zik = 1|x(i), Θ) = αkN (x(i); θk)∑k
m=1 αmN (x(i); θm)

.
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EM for GMM

M-Step: Use membership weights and data to calculate the new
parameter Θ.
▶ The effective number of data points attached to component k are

αnew
k =

∑N
i=1 wik/N .

▶ Compute new means

µnew
k =

(
1

Nk

) N∑
i=1

wikx(i).

▶ Compute new covariance

Σnew
k =

(
1

Nk

) N∑
i=1

wik(x(i) − µnew
k )(x(i) − µnew

k )T .

▶ Mean and covariance is computed similar to how we would compute
these quantities empirically.
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EM for GMM: Practical Considerations
When using GMM, EM can often lead to singularities. These occur when a
Gaussian begins to account for a single data point. In this case variance
goes to zero, resulting in an overfitted model. This case doesn’t arise in
situations where we fit a single Gaussian to the data. (Why?)
One way to solve such singularities is to reset the mean and the variance
of the culprit Gaussian. Specifically, set the new mean to be a
well-behaved local maxima of the likelihood function. Set the variance to
some large value.

Courtesy: Pattern Recognition
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Mean and Variance (1D)

Consider 1D data {x(1), · · · , x(N)}

Mean

⟨x⟩ = 1
N

N∑
i=1

x(i)

Variance

σ2 = 1
N

N∑
i=1

(x(i) − ⟨x⟩)2
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Mean and Covariance

Consider 1D data {x(1), · · · , x(N)}, x(i) ∈ RD

Mean

⟨x⟩ = 1
N

N∑
i=1

x(i), ⟨x⟩ ∈ RD

Variance

Σ = 1
N

(x(i) − ⟨x⟩)(x(i) − ⟨x⟩), Σ ∈ RD×D
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Probabilistic Latent Semantic Analysis (pLSA)

▶ Documents D = {d1, · · · , dN }
▶ Vocabularly W = {w1, · · · , wM }
▶ Co-occurence table of counts nij = count(di, wj), which captures

how may times word w(j) occurs in document d(i).
▶ Associate an unobserved variable zk ∈ {z1, · · · , zK} with each pair

⟨di, wj⟩. We will refer to these as topics.
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Generative model for pair ⟨di, wj⟩

▶ Select a document di with probability p(di)
▶ Pick a topic zk with probability p(zk|di)
▶ Generate a word wj with probability p(wj |zk)

We can write the probability of pair ⟨di, wj⟩ as follows

p(di, wj) =
K∑

k=1
p(wj |zk)p(zk|di)p(di)
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Implicit conditional independence assumption

di and wj are independent conditioned on the state of the associated
latent variable zk.

p(di, wj) =
K∑

k=1
p(wj |zk)p(di|zk)p(zk)
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Likelihood

Under i.i.d. assumption, we write likelihood as follows

L =
N∏

i=1

M∏
j=1

p(di, wj)nij

Log-likelihood

log L =
N∑

i=1

M∑
j=1

nij log p(di, wj)

Learn the hidden variables zk in a maximum likelihood fashion.
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Likelihood

log L =
N∑

i=1

M∑
j=1

nij log p(di, wj)

=
N∑

i=1

M∑
j=1

nij log
[

K∑
k=1

p(wj |zk)p(zk|di)p(di)
]

=
N∑

i=1

M∑
j=1

nij log
[

p(di)
K∑

k=1
p(wj |zk)p(zk|di)

]

=
N∑

i=1

M∑
j=1

nij

[
log p(di) + log

K∑
k=1

p(wj |zk)p(zk|di)
]

=
N∑

i=1

M∑
j=1

nij log p(di) + nij

[
log

K∑
k=1

p(wj |zk)p(zk|di)
]
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Likelihood

continued from last slide

log L =
N∑

i=1
ni log p(di) +

M∑
j=1

nij

[
log

K∑
k=1

p(wj |zk)p(zk|di)
]
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Expectation maximization

E-Step calculates posterior probabilities for latent variables given the
observations by using the current estimates of the parameters.

p(zk|di, wj) = p(wj , zk|di)
p(wj |di)

= p(wj |zk, di)p(zk|di)
p(wj |di)

= p(wj |zk)p(zk|di)∑K
l=1 p(wj |zl, di)p(zl|di)
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Expectation maximization

E-Step continued

In order to maximize log L, set

p(wj |zk) =
∑N

i=1 nijp(zk|di, wj)∑M
l=1

∑N
i=1 wilp(zk|di, wl)

and

p(zk|di) =
∑M

j=1 nijp(zk|di, wj)
count(di)

M-Step Given current estimates of zk, compute p(di), ni, and nij . ni

refers to the number of words in document di.
These quantities can be easily computed using the available data.
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Expectation maximization

▶ Repeat E-Step and M-Step until convergence.
▶ Bag of Words Model: each document is represented using the

frequency of word occurences. The relative ordering of the words is
ignored.
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Applications of pLSA

▶ Topic detection
▶ Image classification
▶ Action classification
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Useful Logarithm Identities

Definition loga(b) = r iff ar = b.
Exponent loga xn = n loga x

By definition loga(x) = r iff ar = x. Let (ar)n = xn then implies that
arn = xn. Then from definition loga xn = rn. Hence loga xn = n loga x.
Multiplication loga(xy) = loga x + loga y

Division
loga

(
x

y

)
= loga x − loga y

Change of base
logb(x) = loga(x)

loga(b)
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Useful Logarithm Identities

One loga(1) = 0

Base-10 We often use the shortcut log to indicate log10

▶ log(10x) = x
▶ 10ln(x) = x

Base-e ln = loge

▶ ln(ex) = x
▶ eln(x) = x

Caveat ln always denotes logarithm base e. log is ambigous. In computer
science, it often refers to logarithm base e or logarithm base 2 depending
upon the context. In many situations the logarithm base does not matter.
E.g., when doing complexity analysis. It is because different logarithms are
simply scalar multiple of each other.


