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Action Recognition Applications

» Surveillance footage
» User-interfaces
» Automatic video organization



Challenges

» Occlusions

» Scale

» Camera movement

» Presence of multiple actions

» Clutter (background)

» Variations in how actions are performed



Paper 1

Schuldt et al., “Recognizing Human Actions: A Local SVM
Approach,” ICPR 2004.



Spatio Temporal Interest Points

» Construct scale-space representation L(.,02,72) using Gaussian
convolutional kernel.

» Compute second-moment matrix VL within Gaussian neighborhood
of each point

» Define feature positions using local maxima of H.
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Flgure 'l. Local space-time features detected for a walk-
ing pattern: (a) 3-D plot of a spatio-temporal leg motion
(up side down) and corresponding features (in black); (b)
Features overlaid on selected frames of a sequence.
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Spatio-Temporal Feature Descriptors

» Spatio-temporal neighborhoods of local features contain information
about the motion and the spatial appearance of events in image
sequences.

» Compute spatio-temporal jets (descriptors) to capture this
information [ = (Lm, Ly7 Lt, L1z7 s 7Ltttt)-

» Cluster descriptors [ using K-means. This gives us a vocabulary of
primitive events h;.

» Compute histogoram H = (hq,- -, h;), where bin h; count the
number of features with label h;.



Hand clapping

Figure 2. Action database (available on request): les of cor ding to different types of actions and scenarios.




Evalution

Representations

1. Local features described by spatio-temporal jets of order 4 (LF)

2. 128-bin histograms of local features (HistLF)

3. Marginalized histograms of normalized spatial temporal gradients
(HistSTG)

Classifiers
1. Support Vector Machine (SVM)
2. Nearest Neighbor Classifier (NNC)

Observations
» LF with SVM gives the best performance.
» SVM gives better performance than NNC on HistLF and HistSTG,
with HistLF performing slightly better than HistSTG.
» Supervised learning approach



Matching Local Features

Figure 4. Examples of matched features in different sequences. (top): Correct matches in sequences with leg actions: (middle):
Correct matches in sequences with arm actions; (bottom): false matches.

» The pairs correspond to features with jet descriptors I, and [,
selected by maximizing the feature kernel over ji in

K(Ly, Ly) = Zmax]h 1o KLy L)
Jh =1



Dataset

» Backgrounds are mostly free of clutter
» Single actor
» 25 people, each
» 6 actions (walking, jogging, running, boxing, hand waving, clapping)
» 4 scenarios (outdoors, outdoors + scale, outdoors + different clothes,
indoors)



Paper 2

Niebles et al., “Unsupervised Learning of Human Action Categories
Using Spatial-Temporal Words,” 1JCV 2008.



Approach

» Learn different classes of actions present in a collection of unlabeled
videos.

» Classify actions in previously unseen videos by applying the learned
models.

» Similar to Hofmann, T. (1999). “Probabilistic latent semantic
indexing.” In Proceedings of the 22nd annual international ACM
SIGIR conference on research and development in information
retrieval (pp. 50-57), August 1999.

Assumptions
» Videos may contain a small amount of camera motion.
» Videos may contains some amount of background clutter.
» Training: videos contains a single actor.
» Testing: videos may contain more than one actors.



Approach

» Extract local space-time regions using space-time interest point
detector.

» Cluster these regions in a codebook.

» Learn probability distributions and discover latent topics using.

» Use the learned model to recognize and localize human action classes.
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Space-time interest point detectors

» Separable linear filters (2D Gaussian + 1D Gabor).
» Extract a small video cube around each interest point.
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Video Representation as a Bag of Visual Words

Space-time descriptors

» Histogram of brightness gradient at each feature point.
> Gradients concatenated to form feature vector.
» Use PCA for reducing dimensionality.
» K-means clustering of video word descriptors to construct the
codebook.
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Video representation
» Histogram of video words from the codebook.



Model (learning probabilities and latent topics)

Given an input video d; and video words w;, we can write the joint
probability as follows:

p(dj, w;) = p(wild;)p(d;).

Furthmore, given a set of (latent) actions zj, where k =1,--- | K,
K
p(wi|d;) = Zp(wilzk)p(zk|dj)'
k=1

Here K is the number of action categories, p(zx|d;) are action category
weights and p(w;|zx) are action category vectors.

Use probablistic Latent Semantic Analysis (pLSA) or Latent Dirichlet
Allocation (LDA) to learn the above model.



Classification

Given a new video and the learnt model, we can classify it as belonging to
one of the action categories using

arg max P(zg|dgest)-
k

Recall

K
w‘dtest ZP Zk|dtest U)|Zk)
k=1



CalTech Dataset

CRES
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O walking [ running O jogging [J boxing O hand dapping hand waving

Words colored according to their most likely action category.
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KTH Datasets
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Words colored according to their most likely action category.
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Performance on KTH Dataset

walking
running
jogging
handwaving
handclapping

boxing

Fig. 8 (a) Confusion matrix for the KTH dataset using 1500 code-
words (performance average = 83.33%); rows are ground truth, and
columns are model results; (b) Classi i

.00

.00

.00

37

00

.00

00

.00

.00

00 .01

00 .00

accuracy (%)

70

65

(a)

accuracy vs.

adopted

—<-1DA
x- pLSA

400 600 800 1000 1200 1400 1600 1800 2000
codebook size

(b)

size for the KTH dataset. Experiments show that the results for the
recognition task are consistently better when the pLSA model is



Weizmann Human Action Dataset

bend O 0O side

Jacks O skip

jump 1 o walk
pjump I O wave 1
run O 0O wave 2
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Fig. 13 (a) Confusion matrix for the Weizmann human action dataset
(Blank et al. 2005); rews are ground truth, and columns are model re-
sults. The action models learnt with pLSA and using 1200 codewords
show an average performance of 90%. (b) Classification accuracy ob-
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tained using pLSA and LDA models vs. codebook size. Qur results
show that pLSA performs slightly better than LDA in the video cate-
gorization task



Dealing with multiple actions

1. Select topics with high p(z|dtest)
2. Assign words to topics using p(w|zg)
3. Cluster words from selected topics according to their spatial position




Dealing with multiple actions - Spatial Localization




Dealing with multiple actions - Localization in Time




Tracking Local Representations for Action Recognition

» Wang et al., "Action Recognition by Dense Trajectories,” CVPR 2011.

Tracking in each spatial scale separately Trajectory description

Dense sampling
in each spatial scale

» Histogram of Oriented Gradients (HOG)
» Histogram of Optical Flow (HOF)
» Motion Boundary Histogram (MBH)



Paper 3 - Deep Learning and Action Recgnition

Zisserman and Carreira, “Quo Vadis, Action Recognition? A New
Model and the Kinetics Dataset,” arXiv:1705.07750v3, 2018.




Architectures (Before 2018)

a) LSTM b) 3D-ConvNet
Action Action
L’STM —m ‘ 3D ConvNet
Image 1 | == | Image K
/I‘ime

time

c) Two-Stream

Action

@‘fﬁ

d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
Action
Action
[SD ConvNet L

=)
I ‘\" [ 3D ConviNet
ConvNet | ConvNet IHI :

Image 1 Opt\cal

Flow 110 N

)

time

T Optical
ptical
Optwwcla\N FIow1toK
\ (o]
Z

— Aime m\e



ConvNET + LSTM (Fig. a)

» Compute deep features from image classification networks
> Benefits from ImageNet pre-training

Approach 1
» Pool deep features (as in bag of visual words) to perform action
classification.
» Drawbacks: Ignore temporal structure. So, these approaches, for
example, cannot distinquish between opening a door and closing a
door.

Approach 2
» Feed deep features to LSTM to capture temporal structure.
» Drawbacks: LSTM using last layer features doesn't capture low-level
information (such as optical flow).



3D ConvNets (Fig. b)

» Computes spatio-temporal deep features.
» Creates hierarchical representations of spatio-temporal data.

Drawbacks
» A lot more parameters as compared to 2D ConvNets.
» Precludes ImageNet pre-training.



Two-Stream Networks (Fig. ¢, d and e)

» RGB stream + flow stream

» [1] models short temporal snapshots of videos by averaging the
predictions from a single RGB frame and a stack of 10 externally
computed optical.

> A recent extension [2] fuses the spatial and flow streams after the last
network convolutional layer, showing some improvement on HMDB
while requiring less test time augmentation (snapshot sampling).



Two-Stream Inflated 3D ConvNets

> Convert successful image (2D) classification models into 3D
ConvNets.
» Given a 2D architecture (trainined on, say, ImageNet), inflate all the
filters and pooling kernels.
» An N X N filter becomes N x N x N filter.
» Bootstrap 3D filters from 2D filters using by using “boring videos”
> An image can be made into a boring video by copying it repeatedly
into a video sequence.
» Carefully control receptive field growth in space and time



Two-Stream Inflated 3D ConvNets

Inflated Inception-V1
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Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling
operators are 1 where not specified, and batch normalization layers, ReLu’s and the softmax at the end are not shown. The theoretical
sizes of receptive field sizes for a few layers in the network are provided in the format “time,x,y” — the units are frames and pixels. The

predictions are obtained convolutionally in time and averaged.



Evaluations

UCF-101 HMDB-51
Architecture Original Fixed Full-FT Original Fixed Full-FT
(a) LSTM 81.0/54.2 | 88.1/82.6 | 91.0/86.8 || 36.0/18.3 | 50.8/47.1 | 53.4/49.7
(b) 3D-ConvNet -/51.6 -/76.0 -179.9 —/24.3 -147.0 -/494
(c) Two-Stream 91.2/83.6 | 93.9/93.3 | 94.2/93.8 || 58.3/47.1 | 66.6/65.9 | 66.6/64.3
(d) 3D-Fused 89.3/69.5 | 943/89.8 | 94.2/91.5 || 56.8/37.3 | 69.9/64.6 | 71.0/66.5

[ (e) Two-Stream 13D | 93.4/88.8 | 97.7/97.4 | 98.0/97.6 || 66.4/62.2 | 79.1/786 | 81.2/813 |

Table 4. Performance on the UCF-101 and HMDB-51 test sets (split 1 of both) for architectures starting with / without ImageNet pretrained
weights. Original: train on UCF-101 or HMDB-51; Fixed: features from Kinetics, with the last layer trained on UCF-101 or HMDB-51;
Full-FT: Kinetics pre-training with end-to-end fine-tuning on UCF-101 or HMDB-51.



Evaluations

[ Model [ UCF-101 | HMDB-51 |
Two-Stream [27] 88.0 59.4
IDT [33] 86.4 61.7
Dynamic Image Networks + IDT [2] 89.1 65.2
TDD + IDT [34] 91.5 65.9
Two-Stream Fusion + IDT [£] 93.5 69.2
Temporal Segment Networks [35] 94.2 69.4
ST-ResNet + IDT [7] 94.6 70.3
Deep Networks [15], Sports 1M pre-training 65.2 -
C3D one network [31], Sports 1M pre-training 82.3 -
C3D ensemble [31], Sports 1M pre-training 852 -
C3D ensemble + IDT [31], Sports 1M pre-training 90.1 -
RGB-I3D, Imagenet+Kinetics pre-training 95.6 74.8
Flow-13D, Imagenet+Kinetics pre-training 96.7 77.1
Two-Stream I3D, Imagenet+Kinetics pre-training 98.0 80.7
RGB-I3D, Kinetics pre-training 95.1 74.3
Flow-13D, Kinetics pre-training 96.5 77.3
Two-Stream 13D, Kinetics pre-training 97.8 80.9

Table 5. Comparison with state-of-the-art on the UCF-101 and HMDB-51 datasets, averaged over three splits. First set of rows contains
results of models trained without labeled external data.



Datasets

» UCF101
» HMDB-51
» Kinectics


http://crcv.ucf.edu/data/UCF101.php
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://deepmind.com/research/open-source/open-source-datasets/kinetics/

From Actions to Activity to Behavior

The Heider-Simmel Illusion


https://www.youtube.com/watch?v=8FIEZXMUM2I
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