
1 / 41

Computer Vision Notes
Edge Detection

Faisal Z. Qureshi
http://vclab.science.uoit.ca

Faculty of Science
Ontario Tech University

February 8, 2025

2 / 41

Copyright information and license

© Faisal Z. Qureshi

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

3 / 41

Acknowledgements

These slides include material from others, including D. Lowe, S. Seitz, K.
Grauman, D. Forsyth, and others.

4 / 41

Edge detection

5 / 41

Edge detection

6 / 41

Edge detection

▶ Identify sudden changes
(discontinuties) in an image

▶ Edges encode semantic and
shape information

▶ Edges are more compact then
pixels

[Source: D. Lowe]

7 / 41

Origin of Edges

Edges are caused by a variety of factors:
▶ Changes in appearance and texture
▶ Object boundaries and depth discontinuities
▶ Changes in surface orientation
▶ Shadows

[Source: S. Seitz and K. Grauman]

8 / 41

Uses of edge detection

▶ Object recognition
▶ Scene understanding
▶ 3D scene reconstruction

9 / 41

Edges as changes in image intensity

10 / 41

Edges as changes in image intensity

11 / 41

Computing image derivatives

Option 1: Reconstruct a continuous function f , then compute partial
derivatives as follows

∂f(x, y)
∂x

= lim
ϵ→0

f(x + ϵ, y) − f(x, y)
ϵ

∂f(x, y)
∂y

= lim
ϵ→0

f(x, y + ϵ) − f(x, y)
ϵ

Option 2: We can use finite difference approximation to estimate image
derivatives

∂f(x, y)
∂x

≈ f [x + 1, y] − f [x, y]
1

∂f(x, y)
∂y

≈ f [x, y + 1] − f [x, y]
1

12 / 41

Computing image derivatives using convolutions

We can compute image derivatives using convolution.

Kernel for computing image derivative w.r.t. x (width)

Hx =
[

1 −1
]

Kernel for computing image derivative w.r.t. y (height)

Hy =
[

1
−1

]

13 / 41

Finite difference filters

▶ Sobel filters

Hx =

 −1 0 1
−2 0 2
−1 0 1

 and Hx =

 1 2 1
0 0 0

−1 −2 −1


▶ Prewire

Hx =

 −1 0 1
−1 0 1
−1 0 1

 and Hx =

 1 1 1
0 0 0

−1 −1 −1


▶ Roberts

Hx =
[

0 1
−1 0

]
and Hx =

[
1 0
0 −1

]

14 / 41

Image derviatives highlights edge pixels

▶ X derivative is computed by convolving image with Hx, and Y
derivative is computed by convolving image with Hy.

▶ Pixels sitting on vertical edges are highlighted in X derivative.
▶ Pixels sitting on horizontal edges are highlighted in Y derivative.

15 / 41

Image gradient

▶ Image gradient ∇I points to the direction of most rapid change in
intensity.

∇I =
[

∂I
∂x

∂I
∂y

]T

▶ Gradient magnitude (can be used to identify edge pixels)

∥∇I∥ =

√(
∂I

∂x

)2
+

(
∂I

∂y

)2

▶ Gradient direction (is perpendicular to the underlying edge)

θ = tan−1
(

∂I

∂x
/

∂I

∂y

)

16 / 41

Image gradient example

17 / 41

Image derviatives highlights edge pixels

▶ Using Sobel filters
▶ X derivative is computed by convolving image with Hx, and Y

derivative is computed by convolving image with Hy.
▶ Pixels sitting on vertical edges are highlighted in X derivative.
▶ Pixels sitting on horizontal edges are highlighted in Y derivative.

18 / 41

Image gradient example

Image gradients capture edge normals in addition to edge strength.

19 / 41

Effect of noise on edge detection

Consider the following 1d image.

f(x)

Image derivative successfully localizes the edge seen in this image.

df(x)/dx

20 / 41

Effect of noise on edge detection
Now consider the same 1d image, but this time corrupted with some noise.
Notice that the edge is still seen in the image.

f

Image derivative, however, is unable to localize the edge in this case.

d
dx f

Image derivatives are highly sensitive to the presence of noise in the
image. Use smoothing first to get rid of high-frequency components.

21 / 41

Smoothing to reduce the effect of noise

Given noisy image

f

Step 1: Perform Gaussian filtering

G ∗ f

Step 2: Compute image derivative

d
dx (G ∗ f)

22 / 41

Smoothing to reduce the effect of noise

Recall that convolution (linear filtering) is associative, meaning

d

dx
(G ∗ f) =

(
d

dx
G

)
∗ f

Gaussian

G

First derviative of Gaussian

d
dx G

23 / 41

Smoothing to reduce the effect of noise

Given noisy image

f

Step 1: Convolve with first derivative of Gaussian

(
d

dx G
)

∗ f

This saves us one convolution operation.

It is a good practice to always smooth an image before computing
its gradient.

24 / 41

Image smoothing & edge localization

Smoothed derivative removes noise, but blur the edges, making edge
localization challenging.

[Source: D. Forsyth]

25 / 41

Image smoothing & edge localization

▶ The gradient magnitude is large
along a thick ’ridge’. How do we
identify (localize) the actual
edge pixels?

▶ How do we link edge pixels to
form contours?

[Source: D. Forsyth]

26 / 41

Designing an edge detector

▶ An edge detector should find all “real” edges, ignoring noise and other
artifacts

▶ An edge detector should have good localization property, i.e., the
detected edges should be as close to real edges as possible.

Cues that we can use for developing a useful edge detector
▶ Intensity, color or texture differences
▶ Continuity or closure
▶ High-level or semantic knowledge

27 / 41

Canny edge detector

Canny, J., A Computational Approach To Edge Detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
8(6):679–698, 1986.

▶ Most widely used edge-detector in computer vision
▶ Theoretical model: step-edges corrupted by Gaussian noise
▶ Canny has shown that the first derivative of the Gaussian closely

approximates the operator that optimizes the product of
signal-to-noise ratio and localization

28 / 41

Canny edge detector - Edge pixel identification

Step 1 Identify edge pixels using gradient magnitude

29 / 41

Canny edge detector - Edge orientations
Step 2 Compute edge orientations using image gradient

30 / 41

Canny edge detector - Edge localization

Step 3 In order to achieve good edge localization, we need to thin out the
edges.

31 / 41

Canny edge detector - Edge localization

Step 3 In order to achieve good edge localization, we need to thin out the
edges.
We will use non-maxima-suppression to achieve that. Non-maxima
suppression needs to account for the orientation at each location.

32 / 41

Canny edge detector - Non-Maxima Suppression
Sample pixel values across the edge (using gradients) and only keep a pixel
if it has the maximum value.

Pixel is kept since it
has the largest

gradient magnitude
across the edge

Pixel is discarded
since it does not have

the largest gradient
magnitude across the

edge

33 / 41

Canny edge detector - Non Maxima Suppression
Before

After

34 / 41

Canny edge detector - Discard non-edge pixels

Pick two thresholds t1 and t2, where t1 < t2, and use these to discard
non-edge pixels.

E(x, y) =

 not an edge, when |∇I(x, y)| < t1
weak edge, when t1 ≤ |∇I(x, y)| ≤ t2
strong edge, when |∇I(x, y)| > t2

E captures the information about non-edge, weak-edge, and strong-edge
pixels.

35 / 41

Canny edge detector - Hysteresis

▶ Start edges at “strong” edge pixels and continue these on “weak”
pixels that fall along these edges.

▶ Use tangent at each pixel to identify neighbouring pixels that fall
along the edge.

36 / 41

Canny edge detector - Hysteresis

Use edge tangent to identify neighbouring pixels that fall along the
same edge.

Tangent at each pixel is easily computed by rotating gradient at
that pixel by 90 degrees.

37 / 41

38 / 41

Canny edge detector - Hysteresis
Weak pixels that do not fall along edges containing strong pixels are
discarded.
In the figure below, notice that some blue pixels are turned off (set to
black), while others are set to green. Both red and green pixels are edge
pixels. Before (top row) and after (bottom row) performing hysteresis
based edge identification.

39 / 41

Canny edge detector - Open CV implementation

OpenCV includes an implementation of Canny edge detector.
import cv2
import numpy as np

img_bgr = cv2.imread(filename)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2GRAY)
canny = cv2.Canny(img_gray, threshold1=60, threshold2=120, apertureSize=3, L2gradient=True)

40 / 41

Difference of Gaussian (DoG)

DoG can be used to approximate smoothed gradient of an image as seen
below.

∂

∂x
(Gσ ∗ I) ≈ (Gσ1 ∗ I) − (Gσ2 ∗ I)

41 / 41

Boundary detection

There has been lot of interest in boundary detection and object
segmentation. More on that later.

