Machine Learning
Introduction

Faisal Qureshi
faisal.qureshi@uoit.ca
Machine Learning

• Making predictions or decisions from data

• Machine learning is easily the greatest export from computing to other scientific disciplines
What makes a “2”? [Source: Urtasun]
Machine Learning

• It is very hard to write programs that solve problems like recognizing a handwritten digit
  • What distinguishes a 2 from a 7?
  • How does our brain do it?

• Instead of writing a program by hand, we collect examples that specify the correct output for a given input

• A machine learning algorithm then takes these examples and produces a program that does the job
  • The program produced by the learning algorithm may look very different from a typical hand-written program. It may contain millions of numbers.
  • If we do it right, the program works for new cases as well as the ones we trained it on.
Machine Learning and Statistics

• Machine learning deals with inference in the presence of uncertainty

• Statistical theory to build models

• Machine learning can be seen as applying computational techniques to statistical problems
Applications of Machine Learning

- Recognizing patterns: face recognition, spoken language understanding
- Digital images and videos: autonomous vehicles
- Recognizing anomalies: unusual sequence of credit card transactions
- Spam filtering & fraud detection
- Recommendation system: ads by Google, Amazon
- Information retrieval: find similar images
- And many many more …
Big Data and Machine Learning

• Machine learning assumes access to large corpus of data for *training*

• “Large” text dataset
  • 1,000,000 words in 1967
  • 1,000,000,000,000 words in 2006
When the Sloan Digital Sky Survey started work in 2000, its telescope in New Mexico collected more data in its first few weeks than had been amassed in the entire history of astronomy.

Now, a decade later, its archive contains a whopping 140 terabytes of information.

A successor, the Large Synoptic Survey Telescope, due to come on stream in Chile in 2016, will acquire that quantity of data every five days.”

The Economist, February 2010
Types of Learning

• Supervised: correct output known for each training example
  • Classification
  • Regression

• Unsupervised: create internal representation of the input, capturing regularities/structure in data
  • Clustering
  • Dimensionality reduction

• Reinforcement learning: pick actions/policy to maximize payoffs
## Types of Learning

<table>
<thead>
<tr>
<th></th>
<th>Supervised learning</th>
<th>Unsupervised learning</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Discrete</strong></td>
<td>Classification or Categorization</td>
<td>Clustering</td>
</tr>
<tr>
<td><strong>Continuous</strong></td>
<td>Regression</td>
<td>Dimensionality reduction</td>
</tr>
</tbody>
</table>
Types of Learning

- **Supervised learning**
  - Discrete: Classification or Categorization
  - Continuous: Regression

- **Unsupervised learning**
  - Discrete: Clustering
  - Continuous: Dimensionality reduction
## Image Categorization

<table>
<thead>
<tr>
<th>Images</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedroom</td>
<td>Indoor</td>
</tr>
<tr>
<td>Kitchen</td>
<td>Indoor</td>
</tr>
<tr>
<td>Grassy Plain</td>
<td>Outdoor</td>
</tr>
<tr>
<td>Lake</td>
<td>Outdoor</td>
</tr>
</tbody>
</table>
Image Categorization

Training images

Training images → Image features → Classifier training → Trained classifier

Training labels
Image Categorization

Test Image → Image features → Trained classifier → Label

Outdoor, grass
Training images

Image features

Classifier training

Trained classifier

Training labels

Test Image

Image features

Trained classifier

Label

Outdoor, grass
Image Features

- Coverage: captures relevant info
- Concision: parsimonious
- Independence: features are independently useful for prediction

Is intensity a good feature for face recognition?
Image features (representations)

- Intensity, gradients, colors, textures, Fourier and Discrete Cosine transform coefficients, etc.

- Histograms of color, gradients, textures, SIFT, FAST, etc.
Learning a Classifier

• Given some features with corresponding labels learn a function to predict the label of a previous unseen feature
Learning a Classifier

- Given some *features* with corresponding *labels*, learn a function to predict the *label* of a previous unseen *feature*.
Learning a Classifier

• Given some *features* with corresponding *labels* learn a function to predict the *label* of a previous unseen *feature*
Learning a Classifier

• Training labels dictate if two examples are similar or different

• Features are used to compute the degree of dissimilarity (or distance) between two examples

  • These can be used to define visual similarity between two examples
Classifiers

• K-nearest Neighbours
• Naive Bayes
• SVM
• Logistic Regression
• RBMs
• Decision Trees
• and many others
Learning a Classifier

• Given some features with corresponding labels learn a function to predict the label of a previous unseen feature.

This is a prediction function.

any thing above this line is an ‘x’
Learning a Classifier

Given a training set \((labeled\ examples)\)
\[(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\]

Learn a \textit{prediction function} \(y = f(x)\) that can be used to assign a label \(y\) given a previously unseen example \(x\).
Features

Raw pixels

Histograms

Gist descriptors

a point in a high-dimensional space
K-nearest Neighbour

Prediction function:

\[ f(x) = \text{label of the nearest training example} \]

Training examples from class 1

Training examples from class 2
K-nearest Neighbour

Prediction function:

\[ f(x) = \text{label of the nearest training example} \]
K-nearest Neighbour

Prediction function:

\[ f(x) = \text{label of the nearest training example} \]

Training examples from class 1

Training examples from class 2

Does this belong to class 1 or class 2?
K-nearest Neighbour

Prediction function:

\[ f(x) = \text{label of the nearest training example} \]
K-nearest Neighbour

Prediction function:

\[ f(x) = \text{label of the nearest training example} \]

- We need a *distance* function
- No training needed
- We need an efficient scheme for finding distance between the query and training set
K-nearest Neighbours

Voronoi partitioning of feature space for two-category 2D and 3D data

From Duda et al.
K-nearest Neighbours

- **1-nearest Neighbour**
- **3-nearest Neighbour**
- **5-nearest Neighbour**
K-nearest Neighbour

• With infinite examples, 1-nearest neighbour provably has error that is at most twice as Bayes optimal error
Naive Bayes

\[ p(A|B) = \frac{p(B|A)p(A)}{p(B)} \]

**Conditional Probability**

*probability of A given B*

\[ p(c|f_1, f_2, f_3, \cdots, f_n) = \frac{p(f_1, f_2, f_3, \cdots, f_n|c)p(c)}{p(f_1, f_2, f_3, \cdots, f_n)} \]
Linear Classifier

Prediction function:

\[ f(x) = \text{sgn}(w^T x + b) \]
Linear Classifier

Prediction function:

\[ f(x) = \text{sgn}(w^T x + b) \]

Learn a linear function that separates the two classes
Linear Classifier

Prediction function:

\[ f(x) = \text{sgn}(w^T x + b) \]

Does this belong to class 1 or class 2?
Linear Classifier

Prediction function:

\[ f(x) = \text{sgn}(w^T x + b) \]
Image Recognition as Classification

• The *training set* contains annotated images

Contains motorbike
Generalization

• How well does a learned model generalize from the data it was trained on to a new test set?
Generalization

- Bias: how much learned model differs from the true model
  - Errors due to inaccurate assumptions and simplifications
- Variance: how much models learned over different training set differ from each other?
  - Inability to accurately estimate parameters from limited data
Variance

- Choose a simple classifier
- Regularize the parameters
- Get more training data
Generalization

• Undercutting: model is too simple and doesn’t capture the relevant features of the training data
  • High bias, low variance
  • High training and test errors
• Overfitting: model is too complex and fits irrelevant features (noise) present in the training data
  • Low bias, high variance
  • Low training and high test errors
Generalization

Model with too few parameters

Model with too many parameters
Training data size

![Graph showing the relationship between error and number of training examples for training and testing data. The graph indicates that as the number of training examples increases, the generalization error decreases for both training and testing data.](image)
Bias vs. Variance

Underfitting

Overfitting

Test error

Training error

Error

Complexity

High Bias
Low Variance

Low Bias
High Variance
Bias vs. Variance

- Many training examples:
  - Low Bias
  - Low Variance

- Few training examples:
  - High Bias
  - High Variance

Graph showing Test Error against Complexity with markers for 'Many training examples' and 'Few training examples'.
Types of Learning

- **Supervised learning**
  - Discrete: Classification or Categorization
  - Continuous: Regression

- **Unsupervised learning**
  - Discrete: Clustering
  - Continuous: Dimensionality reduction
Principle Component Analysis (PCA)
Principle Component Analysis (PCA)

• PCA takes advantage of correlations in data dimensions to produce the best possible lower dimensional representations (according to the reconstruction error)

• PCA should **not** be used for discovering patterns

• PCA should **not** be used for making predictions

• PCA should be **used for dimensionality reduction**
PCA

All data points can be projected onto this axis, which will reduce data dimension to 1.
PCA

Given n d-dimensional data points

\[ x_1, x_2, x_3, \cdots, x_n \quad \text{where} \quad x_i \in \mathbb{R}^d \]

Compute

\[ z_i = x_i - \mu \]

Generate matrix \( Z \in \mathbb{R}^{d \times n} \)

\[
\begin{bmatrix}
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
z_1 & z_2 & z_3 & \cdots & z_n \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots 
\end{bmatrix}
\]
PCA

Compute $\mathbf{ZZ}^T \in \mathbb{R}^{d \times d}$

Compute **eigenvectors** and **eigenvalues** of $\mathbf{ZZ}^T$

$\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d$ \hspace{1cm} $\lambda_1, \lambda_2, \ldots, \lambda_d$

$\mathbf{v}_i \in \mathbb{R}^d$ \hspace{1cm} $\lambda_1 \geq \lambda_2 \geq \lambda_3 \ldots \lambda_d$
PCA

Construct a projection matrix consisting of the eigenvectors corresponding to top-k (k << n) eigenvalues

\[ P = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ v_1 & v_2 & v_3 & \cdots & v_k \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \in \mathbb{R}^{d \times k} \]
PCA

Project n, d dimensional points into k dimensional space (k << n) as follows

\[ x'_i = P^T z_i \]

**Dimensionality reduction**
data dimension has been reduced from n to k, where k << n
PCA

Reconstruct n-dimensional points from k-dimensional points

\[ \mathbf{x}_{i}^{\text{reconstructed}} = \mathbf{P} \mathbf{x}_{i}' + \mu \]

Lossy Reconstruction
We can also reconstruct the original d-dimensional data from k-dimensional data.
Original 2-D data

Mean centered data

Eigenvectors

Dimensionality reduced from 2D to 1D

1-D data projected along the eigenvector corresponding to the largest eigenvalue
PCA Applications:
Face Recognition

Eigenfaces for Recognition

Matthew Turk and Alex Pentland
Vision and Modeling Group
The Media Laboratory
Massachusetts Institute of Technology

### Types of Learning

<table>
<thead>
<tr>
<th>Discrete</th>
<th>Supervised learning</th>
<th>Unsupervised learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Classification or Categorization</td>
<td>Clustering</td>
</tr>
<tr>
<td>Continuous</td>
<td>Regression</td>
<td>Dimensionality reduction</td>
</tr>
</tbody>
</table>
Clustering

• Group together similar points (items), and represent them with a single token
Clustering

• Group together similar points (items), and represent them with a single token

• Key challenges
  • What makes two points/images/patches/items similar?
  • How can we compute an overall grouping from pairwise similarities?
Why perform clustering?

- Summarizing data
- Counting
- Segmentations
- Prediction

- Look at large amounts of data
- Represent high-dimensional vectors with a cluster number

- Histograms (texture, SIFT vectors, color, etc.)

- Separate image into different regions

- Images recognition: image in the same cluster may have the same labels
Clustering methods

- K-means
- Agglomerative clustering
- Mean-shift clustering
- Spectral clustering
K-means Clustering

Data points

Clustering results with 2 centers

2 centers

Clustering results with 3 centers

3 centers
K-means Clustering

- Objective: cluster to minimize variance in data given clusters
- Preserve information

Given $n$ data points: $x_1, x_2, x_3, \cdots, x_n$

Find $k$ cluster centers

$$c^*, \delta^* = \arg\min_{c, \delta} \frac{1}{n} \sum_{j}^{n} \sum_{i}^{k} \delta_{ij} (c_i - x_j)^2$$

whether or not data point $j$ is assigned to cluster $i$
K-means Clustering

**Algorithm**

**Initialize** (randomly) centroids

**Find closest centroid to each point.** Group points that share the same centroid

**Update each centroid** to be the mean of the points in its group

Loop until convergence (number of iterations reached or centroids don’t move)

[http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html](http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html)
K-means Clustering

1. Initialize cluster centers at time $t=0$: $c^0$

2. Assign each point to the closest center

$$\delta^t = \arg\min_{\delta} \frac{1}{n} \sum_{j} \sum_{i} \delta_{ij} (c_{i}^{t-1} - x_j)^2$$

3. Update the cluster centers as the mean of the points that belong to it

$$c^t = \arg\min_{c} \frac{1}{n} \sum_{j} \sum_{i} \delta_{ij}^t (c_{i} - x_j)^2$$

4. Repeat steps 2 and 3, until convergence is achieved
K-means Clustering

- Initialization
  - Randomly select k points as initial cluster centers
  - Greedily select k points to minimize residual
  - What if a cluster center sits on a data point?

- Distance/similarity measures
  - Euclidean, others …

- Optimization
  - Cannot guarantee that it will converge to *global minima*
  - Multiple restarts

- Choice of K?
Image Segmentation

K-means clustering using intensity or color

Image

Clusters on intensity

Clusters on color
Image Segmentation

Each pixel is replaced by its cluster centre. The number of cluster is set to 5. Using RGB values.
K-means Clustering

• Pros
  • Find cluster centres that are good representation of data (reduces conditional variance)
  • Simple, fast* and easy to implement

• Cons
  • Need to select the number of clusters
  • Sensitive to outliers
  • Can get stuck in local minima
  • All clusters have the same parameters, i.e., distance/similarity measure is non-adaptive
  • *Each iteration is $O(knd)$ for $n$, d-dimensional points, so it can be slow
  • K-means is rarely used to image segmentation (pixel segmentation)
Commonly used distance/similarity measures

- **P-norms**
- **City block (L1)**
- **Euclidean (L2)**
- **L-infinity**
- **Mahalanobis distance**
- **Scaled Euclidean**
- **Cosine Distance**

\[
\|x\|_p := \left( \sum_{i=1}^{n} |x_i|^p \right)^{1/p}.
\]

\[
\|x\|_1 := \sum_{i=1}^{n} |x_i|.
\]

\[
\|x\| := \sqrt{x_1^2 + \cdots + x_n^2}.
\]

\[
\|x\|_\infty := \max(|x_1|, \ldots, |x_n|).
\]

\[
d(\bar{x}, \bar{y}) = \sqrt{\sum_{i=1}^{N} \frac{(x_i - y_i)^2}{\sigma_i^2}},
\]

Similarity \(\cos(\theta) = \frac{A \cdot B}{\|A\|\|B\|}\)
How many cluster centers?

- Validation set
  - Try different numbers of clusters and look at performance
Evaluating Clusters

• Generative
  • How well are points reconstructed from the clusters?

• Discriminative
  • How well do the clusters correspond to labels? This is often termed as purity.
  • Unsupervised clustering doesn’t aim to be discriminative
K-mediods Clustering

• Similar to K-means
  • Represent a cluster center with one of its members (data points), rather than the mean of its members
  • Choose the member (data point) that minimizes cluster similarity
• Applicable in situations where mean is not meaningful
  • Clustering hue values
  • Using L-infinity norm for similarity
Building Visual Dictionaries

- Sample patches from a database
  - E.g., 128-dimensional SIFT features
- Cluster these patches
  - Clusters centers comprise (visual) dictionary
- Assign a codeword (number, cluster center) to each new patch (say 128-dimensional SIFT feature) according to the nearest cluster
Agglomerative Clustering

Step 0

Step 1

Step 2

Step 3

Step 4
Agglomerative Clustering

1. Say “Every point is its own cluster”
Agglomerative Clustering

1. Say "Every point is its own cluster"
2. Find "most similar" pair of clusters
Agglomerative Clustering

1. Say “Every point is its own cluster”
2. Find “most similar” pair of clusters
3. Merge it into a parent cluster
Agglomerative Clustering

1. Say “Every point is its own cluster”
2. Find “most similar” pair of clusters
3. Merge it into a parent cluster
4. Repeat
Agglomerative Clustering

1. Say “Every point is its own cluster”
2. Find “most similar” pair of clusters
3. Merge it into a parent cluster
4. Repeat
Agglomerative Clustering: Defining Cluster Similarity

- **Single-linkage clustering** (also called the connectedness or minimum method),
  - We consider the distance between one cluster and another cluster to be equal to the shortest distance from any member of one cluster to any member of the other cluster.
  - If the data consist of similarities, we consider the similarity between one cluster and another cluster to be equal to the greatest similarity from any member of one cluster to any member of the other cluster.

- **Complete-linkage clustering** (also called the diameter or maximum method)
  - We consider the distance between one cluster and another cluster to be equal to the greatest distance from any member of one cluster to any member of the other cluster.

- **Average-linkage clustering**
  - We consider the distance between one cluster and another cluster to be equal to the average distance from any member of one cluster to any member of the other cluster.
  - A variation on average-link clustering uses the median distance, which is much more outlier-proof than the average distance.
Agglomerative Clustering

• How many clusters?
  • Agglomerative clustering creates a tree (commonly referred to as a dendrogram)
  • Threshold based upon the maximum number of clusters
  • Threshold based upon distance of merges
Agglomerative Clustering

Single-linkage clustering (Johnson’s algorithms)

1. Begin with the disjoint clustering having level $L(0) = 0$ and sequence number $m = 0$.
2. Find the least dissimilar pair of clusters in the current clustering, say pair $(r), (s)$, according to
   \[
   d[(r),(s)] = \min d[(i),(j)]
   \]
   where the minimum is over all pairs of clusters in the current clustering.
3. Increment the sequence number: $m = m + 1$. Merge clusters $(r)$ and $(s)$ into a single cluster to form the next clustering $m$. Set the level of this clustering to
   \[
   L(m) = d[(r),(s)]
   \]
4. Update the proximity matrix, $D$, by deleting the rows and columns corresponding to clusters $(r)$ and $(s)$ and adding a row and column corresponding to the newly formed cluster. The proximity between the new cluster, denoted $(r,s)$ and old cluster $(k)$ is defined in this way:
   \[
   d[(k), (r,s)] = \min d[(k),(r)], d[(k),(s)]
   \]
5. If all objects are in one cluster, stop. Else, go to step 2.

http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html
Agglomerative Clustering

- **Pros**
  - Simple to implement
  - Clusters have adaptive shapes
  - Provides a hierarchy of clusters

- **Bad**
  - These do not scale well. Time complexity is $O(n^2)$
  - May have imbalanced clusters
  - They cannot undo what was done previously
  - Need to choose the number of clusters
  - Needs to use an “ultrametric” to get meaningful hierarchy
    - Ultrametric space is a special kind of metric space in which the triangle inequality is replaced with $d(x, z) \leq \max (d(x, y), d(y, z))$
Mean Shift Clustering
Mean shift Clustering

- The mean shift algorithm seeks *modes* of a given set of points

- Algorithm outline
  1. Choose kernel and bandwidth
  2. For each point
     a. Center a window on that point
     b. Compute the mean of the data in the search window
     c. Center the search window at the new mean location
     d. Repeat steps b,c above until convergence
  3. Assign points that lead to nearby modes to the same cluster
Mean shift

Region of interest
Center of mass

Mean Shift vector
Mean shift

Region of interest

Center of mass

Mean Shift vector
Mean shift

Region of interest
Center of mass

Mean Shift vector
Mean shift
Mean shift

Region of interest
Center of mass
Mean Shift vector
Mean shift

Region of interest

Center of mass

Mean Shift vector
Mean shift

Region of interest

Center of mass

Slide by Y. Ukrainitz & B. Sarel
Kernel density estimation function

\[ \hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^{n} K \left( \frac{x - x_i}{h} \right) \]

Gaussian kernel

\[ K \left( \frac{x - x_i}{h} \right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_i)^T(x-x_i)}{2h^2}} \]
Computing Mean Shift

• Compute mean shift vector

• Shift the kernel window

\[ m(x) = \left[ \frac{\sum_{i=1}^{n} x_i g \left( \frac{\|x-x_i\|^2}{h} \right)}{\sum_{i=1}^{n} g \left( \frac{\|x-x_i\|^2}{h} \right)} \right] - x \]
Real Modality Analysis
Attraction basin

- **Attraction basin**: the region for which all trajectories lead to the same mode

- **Cluster**: all data points in the attraction basin of a mode
Attraction basin

(a) 

(b) 

(c) 

Slide credit: James Hayes
Image segmentation using Mean Shift

• Compute features for each pixel (color, gradient, texture, etc.)

• Set kernel size for features ($K_f$) and position ($K_s$)

• Initialize windows at individual pixel locations

• Perform mean shift for each window until convergence is reached

• Merge windows that are within width of $K_f$ and $K_s$
Mean shift

• Speed up
  • Binned estimation
  • Fast neighbour search
  • Update each window at each iteration

• Other tricks
  • Use kNN to determine window sizes adaptively

Mean shift

• Pros
  • Good general purpose segmentation
  • Flexible in number and shapes of regions
  • Robust to outliers

• Cons
  • Have to choose kernel size in advance
  • Not suitable for high-dimensional features (i.e., data points)

• When to use it?
  • Oversegmentation
  • Multiple segmentations
  • **Tracking**, clustering and filtering applications